ADVANCED Kai Hwang
COMPUTER
ARCHITECTURE

PARALLELISM
SCALABILITY . . —elier—
7 P T
/‘ ‘.'...‘ e
PROGRAMMABILITY > "J 'y _,._:p

- "'I'Pil‘ '
FOReG

@ Tata McGraw-Hill

ADVANCED COMPUTER ARCHITECTURE
Parallelism, Scalability, Programmability

Copyright © 2000 by The McGraw-Hill Companies, Inc..

All rights reserved. No part of this publication may be reproduced or
distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of publisher. with ihe exception
that the program listings may be entered, stored. and executed in a computer
sysiem, but they may not be reproduced for publication

Tata McGraw-Hill Edition 2001

Eighteenth reprint 2008
RACYCDRXRBZQD

Reprinted in India by arrangement with The McGraw-Hill Companics Inc.,
New York

Sales territories: India, Pakistan, Nepal. Bangladesh, Sri Lanka and Bhutan

Library of Congress Cataloging-in-Publication Data
Hwang, Kai, 1943 -
Advanced Computer Architecture: Parallelism. Scalability. Programmability/
Kai Hwang,
p- em. —=(McGraw-Hill computer science series. Computer organization and
architecture. Network, parallel and distributed computing. McGraw-Hill computer
engineering series)
Includes bibiiographical references (p.) and index.
ISBN 0-07-031622-8
. Computer Architecture I Title il Series
QAT6.9ATHS7 1993
004°35-dc20 92-44944

ISBN-13: 978-0-07-053070-6
ISBN-10: 0-07-053070-X

Published by Tata McGraw-Hill Publishing Company Limited.
7 West Patel Nagar, New Delhi 110 008, and printed at
Gopaljee Enterprises, Delhi 110 053

The McGraw-Hill Companies

Contents

PART I THEORY OF PARALLELISM 1
Chapter 1 Parallel Computer Models............c0oiuiiuniaiineinianinn. 3
1.1 The State of Computingttt ittt eiiaerrananseesasssons 3
1.1.1 Computer Development Milestones...........c.vuviiuiiinninnnnen. 3

1.1.2 Elements of Modern Computers.........couuiuuieununriiensnroasss 6

1.1.3 Evolution of Computer Architecture...........c.covieviiiininan... 9

1.14 System Attributes to Performancecoouinuiiiniannn... 14

1.2 Multiprocessors and Multicomputerscciouitienniiraenransennans 19
1.2.1 Shared-Memory Multiprocessorsc.ouiueiueanranennn.. 19

1.2.2 Distributed-Memory Multicomputers.................c.ooian... 24

1.2.3 A Taxonomy of MIMD Computerso.uiiiiueuneiiuneenans 27

1.3 Multivector and SIMD Computersoourtiiieunineneneennnannnn 27
1.3.1 Vector SupercoOmpPutersttt ettt ee e e eeeeaeenns 27

1.3.2 SIMD SupercOmpPUtersottt etesansreeasesaseassaasns 30

14 PRAMand VLSIModelsououiuniaintiaiianannen.. 32
1.4.1 Parallel Random-Access Machines.33

1.4.2 VLSI Complexity Model iiiiiiiiininannnn. 38

1.5 Architectural Development Tracks.0iunniiiieerennnnnnnnn. 41
1.5.1 Multiple-Processor Tracks.ooiuiuiiniuiiinniuinsiionnns 41

1.5.2 Multivectorand SIMD Tracks........................0.00vnen... 43

1.5.3 Multithreaded and Dataflow Tracks............................. 44

1.6 Bibliographic Notes and EXercisesou'iieussieessnnneneenonnns 45

ix

Chapter 2 Program and Network Propertiescc00v.... 51
2.1 Conditions of Parallelismuuuuet s i esseeesseenusaanss .91
2.1.1 Data and Resource Dependences.............oovovirieersennnnnnns 51

2.1.2 Hardware and Software Paralleliszn. 0oneiieiieiienn . 57

2.1.3 The Role of Compilers........coouuieeuiuiieiiusiosaiaseenssasnnas 60

2.2 Program Partitioning and Scheduling...........ccociiiiiiiiiniiiiinnnnaes 61
2.2.1 Grain Sizes and Latencyo.virrnierinrinnennaseeeansennss 61

2.2.2 Grain Packing and Schedulingciiiiiiiiiirinnnnvannass 64

2.2.3 Static Multiprocessor Scheduling..........coivviiiniinviunnaness 67

2.3 Program Flow Mechanisms.ouuteinniiineiseseeoonssesnesaeennen 70
ulmwmuww

2.3.3 Comparison of Flow Mechanisms..........covviieniniiiiasinnaa, 75

2.4 System Interconnect Architecturescvvuivuiineeernnannnaansns 76
2.4.1 Network Properties and Routingco0vieiiniininnnnnsn. 77

242 Static Connection Networks.00 80

2.4.3 Dynamic Connection Networks.c.ciiiiirinnicransnnnans 89

2.5 Bibliographic Notes and Exercises...........ccovviiiviiiiiiiiiirnencnnss 96
Chapter 3 Principles of Scalable Performance............ccooivivina 105
3.1 Performance Metricsand Measures................000000e0eeenensee.... 108
3.1.1 Parallelism Profile in Programscooovieniiiiaiinninnanes 108

3.1.2 Harmonic Mean Performance 0onniniiiiiiiiiiaina.... 108

3.1.3 Efficiency, Utilization, and Quality.......cooviviiiiieraiinennss 112

3.14 Standard Performance Measures00000000e.... 115

3.2 Parallel Processing Applications........coouiviviuiiiesoniriisinnasnansns 118
3.2.1 Massive Parallelism for Grand Challenges............cc00vnses 118

3.2.2 Application Models of Parallel Computers..............co.0vu.. 122

3.2.3 Scalability of Parallel Algorithmsccoiiniiiiiiiianainass 125

3.3 Speedup Performance Laws..........co0iueeeeieanerreararesoncesncanes 129
3.3.1 Amdahl's Lawfora Fixeq Workload129

3.3.2 Gustafson’s Law for Scaled Problems........................... 131

3.3.3 Memory-Bounded Speedup Model.........coiiiiiiiiiinninnna 134

3.4 Scalability Analysis and Approachescooiviiuuiiinanaroenennnas 138
3.4.1 Scalability Metricsand Goals................iiiiiiiiinnan... 138

3.4.2 Evolution of Scalable Computers............ccoiviiiiiininann. 143

3.5 Bibliographic Notes and Exercises..........ccouieeuieniiuneseiiciaannans 149

PART II HARDWARE TECHNOLOGIES 155

Contents xi

Chapter 4 Processors and Memory Hierarchyoooiu... 157
4.1 Advanced Processor Technology............. . oiiiiiiiiinieiiiaiannas 157
4.1.1 Design Space of Processors...........c.ouuiurnueiussesassnaenns 157
Lhummmmmm*&uﬁwww

4.2 Superscalar and Vector Processorsc.oueuiiuiiuuiiusiaeennn.n, 177
4.2.1 Superscalar Processors.c...uuveeuiiiuaiasisassassncanss 178

422 The VLIW Architecture0o0eeeeeieneinee..... 182

4.2.3 Vector and Symbolic Processors...........oooviiiieiiinneernnns 184

4.3 Memory Hierarchy Technologyoiietiiiniiiiiiianeannnanns 188
4.3.1 Hierarchical Memory Technology........... et 188

4.3.2 Inclusion, Coherence, and Localityooiviniinnn... 190

4.3.3 Memory Capacity Planningciiiiiiiiniinnannnan... 194

44 Virtual Memory Technologyoiiiiitiiiiiiiiiianeinaiasiansannan 196
44.1 Virtual Memory Modelsot iiiiiniiiiiiiiiennnennss 196

44.2 TLB, Paging, and Segmentationocvuiieunnnenannans 198

4.4.3 Memory Replacement Policies.cviiuniiiinieinaransavaans 205

4.5 Bibliographic Notes and Exercises...........c..iiiiieuiiicninnossncnssas 208
Chapter 5 Bus, Cache, and Shared Memory.........coovviviiciecnns 213
5.1 Backplane Bus Systemsttt s 213
5.1.1 Backplane Bus Specificationcoiiiiiiiiiiiiiiiiiiiiiin 213

5.1.2 Addressing and Timing Protocols..........cooiiiiiuiiiiiiin., 216

5.1.3 Arbitration, Transaction, and Interruptc..ociviiiiiinnnnas 218

14 ThelE r tandards..........c.oiiiiiiiiiiiiiiains 221

5.2 Cache Memory Organizationsovviiiiiiieiiiririnnaracnaianes 224
5.2.1 Cache Addressing Models.............cooiiiiiiiiiiiiiiiiiennn. 225

5.2.2 Direct Mapping and Associative Caches........................ 228

9.2.3 Set-Associativeand SectorCaches 232

5.24 CachePerformance ISSues..............ueeeeeeenseeeaneeeianen. 236

5.3 Shared-Memory Organizationso.iviiiiiiiiiniaieninannanann.. 238
5.3.1 Interleaved Memory Organization.............o.vovuieninaannnss 239

5.3.2 Bandwidth and Fault Toleranceoouneenneeeeneneeee ... 242

5.3.3 Memory Allocation Schemescuiiieiiienunnennn 244

5.4 Sequential and Weak Consistency Models 248
5.4.1 Atomicity and Event Ordering.............oiiiiiiinneainaaanes 248

5.4.2 Sequential Consistency Model.oiiias 252

5.4.3 Weak Consistency Modelsccoiiiiiiiiiinnininnn 253

5.5 Bibliographic Notes and Exercises.ouveiinenecrnnnsironessiss 256

Chapter 6 Pipelining and Superscalar Techniques 265

xii Contents

6.1 Linear Pipeline Processorsooouuuiir sttt eesesennennnnnn. 265
6.1.1 Asynchronous and Synchronous Models........................ 265

6.1.2 Clocking and Timing Controlc.oiiuiiiiiiiuanunnnn... 267

6.1.3 Speedup, Efficiency, and Throughput 268

6.2 Nonlinear Pipeline Processorsottt ittt e s seeeeanenens 270
6.2.1 Reservation and Latency Analysis...........c.cooiiiininnnnnnn... 270

6.2.2 Collision-Free Scheduling0 0iiiiiiiiiiiinnennnn. 274

6.2.3 Pipeline Schedule Optimization.............ooiiiiiiiiiuinn .. 276

6.3 Instruction Pipeline Designituiuriiiiiierreernaanreanns 280
6.3.1 Instruction Execution Phases 0000 ... 280

6.3.2 Mechanisms for Instruction Pipelining 283

6.3.3 Dynamic Instruction Scheduling iiiiiiiiiniinnnnn. 288

6.3.4 Branch Handling Techniques....... cciiiiiiiiiiinanaans 291

6.4 Arithmetic Pipeline Design iiiiiiiiiiiieiiirannnnnnann 297
6.4.1 Computer Arithmetic Principlesooiiiiiiiiiiiian... 297

6.4.2 Static Arithmetic Pipelinesc.iiiiiiiiiiiinannnnnn.. 299

6.4.3 Multifunctional Arithmetic Pipelines..............coviiuvuiinan, 307

6.5 Superscalar and Superpipeline Design.........c.ccovuviiiiviiiiiiiaiians, 308
6.5.1 Superscalar Pipeline Design........c.ooiviiiiniaviinais. consae 310

6.5.2 Superpipelined Designcovviviiiiiniinniicaiaans uesssvans 316

6.5.3 Supersymmetry and Design Tradeoffscoiviiiiinan, 320

6.6 Bibliographic Notes and Exercises..........cciveiviiiruiiesnsrensrsnncas 322
PART III PARALLEL AND SCALABLE ARCHITECTURES 329
Chapter 7 Multiprocessors and Multicomputersco0vuu.. 331
7.1 Multiprocessor System Interconnects..........ccoovueiirainaiaeaannn. 331
7.1.1 Hierarchical Bus Systemsccccoiveieeiurrrcrurassnnsanens 333

7.1.2 Crossbar Switch and Multiport Memorycovviiiuinnan 336

7.1.3 Multistage and Combining Networks.................cc0vvvune. 341

7.2 Cache Coherence and Synchronization Mechanisms..............icvnun. 348
7.2.1 The Cache Coherence Problem.ccoiuiurnurrseeeeeeennnns 348

7.2.2 Snoopy Bus Protocolscvviiiiiiiniiiiiiiirannsaninsss 351

7.2.3 Directory-Based Protocolscooiiiiiiiiiiniiiiianananns 358

7.2.4 Hardware Synchronization Mechanisms0.... 364

7.3 Three Generations of MulticOmputersccoeeeiurenursreareaens 368
7.3.1 Design Choicesinthe Past................coiviiiiniiinninnnn.. 368

7.3.2 Present and Future Development....................cooiiuunn. 370

7.3.3 The Intel Paragon Systemcovviuineinnn... cssws=s . 372

7.4 Message-Passing MechaniSmsocoeeiniunnnnnnnnnns. .. 379

7.4.1 Message-Routing Schemesc.cciiiniiinireiinenannnnnns 375

Contents xiii

7.4.2 Deadlock and Virtual Channels............coovvvviinninienn.. 379

7.4.3 Flow Control Strategies.cooiiiiiiiiiieninenenennn. 383

7.4.4 Multicast Routing Algerithmscooiuiiiiiniiiiiniinnnn... 387

7.5 Bibliographic Notes and Exercises..............ooviiviiiiriinnennnnnn. 393
Chapter 8 Multivector and SIMD Computers..............ccc.oo..... 403
8.1 Vector Processing Principleso0itiiiiiiiiiinasannnns 403
8.1.1 Vector Instruction Typesoitmiinrr i inreanennann. 403

8.1.2 Vector-Access Memory Schemes............. ... c.ooiuiiii..... 408

8.1.3 Past and Present Supercomputers....................c.ccuu... 410

8.2 Multivector Multiprocessors.oviriiniiiiii e iiiiiiiieninnnn, 415
8.2.1 Performance-Directed Design Rules............................ 415

822 Cray Y-MP,C-90,and MPP iiiitiiiiininnanaannss 419

8.2.3 Fujitsu VP2000 and VPPS00.oiii i 425

8.2.4 Mainframes and Minisupercomputerso.ouueueuiiun.s 429

8.3 Compound Vector Processingoooviriiiiiniininnnennneann. 435
8.3.1 Compound Vector Operations.covvrurrernreennnnnnnns 436

8.3.2 Vector Loops and Chainingc.oviiiiiiiiiinnneenanns. 437

8.3.3 Multipipeline Networkingooiiiriiiriiiiinnnaenn. 442

8.4 SIMD Computer Organizationsoo.eeeeesereeeiiensseeenenn. 447
8.4.1 Implementation Models............coiiiiiiiiiiiineininnn.., 447

8.4.2 The CM-2 Architecture 449
MMMMMMM
85 The C tion Machi CM-5 {57

8.5.1 A Synchronized MIMD Machineccoueeiuuneenn.... 457
8.5.2 The CM-5 Network Architecture..............coiiiiieneninnn.. 460
8.5.3 Control Processors and Processing Nodes 462
8.5.4 Interprocessor CommunmiCationsvvvviuruuunennnsronans 465
8.6 Bibliographic Notes and Exercises.................coiiiiiiiiinin.nn, 468

Chapter 9 Scalable, Multithreaded, and Dataflow Architectures.... 475

9.1 Latency-Hiding Techniques.......... iiiiiiiiiiinannnns 475
9.1.1 Shared Virtual Memoryttt iieiiinanaanns 476
9.1.2 Prefetching Techniquest iiiiiinninas.. 480
9.1.3 Distributed Coherent Caches............................. 482
9.1.4 Scalable Coherence Interface................c.oiiiiiiiin... 483
9.1.5 Relaxed Memory Consistencyoviuiiniiininnnannnnns 486
9.2 Principles of Multithreading i 490
9.2.1 Multithreading Issues and Solutions...................... 490
9.2.2 Multiple-Context Processors............coiiiiiiiiiiniininnnn. 495
9.2.3 Multidimensional Architectures..............cccoiviiiiiiiina.. 499

9.3 Fine-Grain Multicomputers e 504

xiv Contents

9.3.1 Fine-Grain Parallelism.........c..ccoiviiiiiiiiiiiiiianiinnnne. 505

932 The MIT J-Machine......coovvviniiiiiniiiiiiiiiiraneenanans 506

9.3.3 The Caltech Mosaic C.........vviiiiiiiiiiiiiiiiiaiannaaaans 514

9.4 Scalable and Multithreaded Architectures.................c.oovvinan, 516
9.4.1 The Stanford Dash Multiprocessor...............c.cviininn... 516

9.4.2 The Kendall Square Research KSR-1................. 521

9.4.3 The Tera Multiprocessor Systemcoovuiiiianrannannns 524

9.5 Dataflow and Hybrid Architectures.................ciiiiiiiiinnnnennnn. 531
9.5.1 The Evolution of Dataflow Computers 531

952 The ETL/EM-4inJapan.........cooviriiiiiiiiriinriarnnnnnn, 534

9.5.3 The MIT/Motorola *T Prototype.........c.cvveurerrnninnnnn.. 536

9.6 Bibliographic Notes and Exercises............ ..., 539
PART IV SOFTWARE FOR PARALLEL PROGRAMMING 545
Chapter 10 Parallel Models, Languages, and Compilers.............. 547
10.1 Parallel Programming Models. ... 547
10.1.1 Shared-Variable Model oot 547

10.1.2 Message-Passing Model. ..., 551

10.1.3 Data-Parallel Model i i it iiianannn 554

10.1.4 Object-Oriented Model ouuiiiiiiiiiiiieiinnannn. 556

10.1.5 Functional and LogicModels 559

10.2 Parallel Languages and Compilers.iiiitiiiiiniiinenninnnns 560
10.2.1 Language Features for Parallelism, 560

10.2.2 Parallel Language Constructs...........ooiiiiiiiiinennennanns 562

10.2.3 Optimizing Compilers for Parallelism 564

10.3 Dependence Analysis of Data Arrays............coiiiiiiiiiiiinennann. 567
10.3.1 Iteration Space and Dependence Analysis..................... 567

10.3.2 Subscript Separability and Partitioning 570

10.3.3 Categorized Dependence Tests.........cooviiiiiiiiiiiininncns 573

10.4 Code Optimization and Scheduling. ciiiiiiiiiiiin.. 578
10.4.1 Scalar Optimization with Basic Blocks........................ 578

10.4.2 Local and Global Optimizationscouvirinnennnnnnnns 581

10.4.3 Vectorization and Parallelization Methods 585

10.4.4 Code Generation and Scheduling..............cooviviviiiian.. 592

10.4.5 Trace Scheduling Compilationcoooiiiiiiiininn... 596

10.5 Loop Parallelization and Pipelining, 599
10.5.1 Loop Transformation Theorycooiiiiiiiiiiiiiineinn. 599

10.5.2 Parallelization and Wavefronting...............c..oiiiiiiiinn. 602

10.5.3 Tiling and Localization e eeteereeaaaaaaeeaaas 605

10.5.4 Software Pipelining...........oiiiiiiiiiiiiiiniiiinnennnn. 610

Contents XV

10.6 Bibliographic Notes and Exercises.............covivivuiininiinnnienan, 612
Chapter 11 Parallel Program Development and Environments...... 617
11.1 Parallel Programming Environmentsoovviriiiininieiniannnn. 617
11.1.1 Software Tools and Environments..............c.ooviiinnannn. 617

11.1.2 Y-MP, Paragon, and CM-5 Environments..................... 621

11.1.3 Visualization and Performance Tuning...........cov.vivinn... 623

11.2 Synchronization and Multiprocessing Modes. 625
11.2.1 Principles of Synchronizationccoiiiiinniiann., 625

11.2.2 Multiprocessor Execution Modes...........coiiiininnenn.n. 628

11.2.3 Multitasking on Cray Multiprocessors...........covvvvveeennn. 629

11.3 Shared-Variable Program Structuresccoirneninnnn.. 634
11.3.1 Locks for Protected Accessoooiuinieiiniiiinnaenin.... 634

11.3.2 Semaphores and Applications.voeuuureeeienneeanan. 637

11.3.3 Monitors and Applications.............cciiiiiiiiernnnannnnns 640

11.4 Message-Passing Program Development oo, 644
11.4.1 Distributing the Computationccoiiiiiiriinn... 644

11.4.2 Synchronous Message Passing.............coooiiiiiniiiinnnnn. 645

11.4.3 Asynchronous Message Passingccviiiiiininennenns 647

11.5 Mapping Programs onto Multicomputers...................coviiiinn.. 648
11.5.1 Domain Decomposition Techniquesccoivinnnn. 648

11.5.2 Control Decomposition Techniques.ccciiiiinnnnnn. 652

11.5.3 Heterogeneous Processing.vu et ines s inneannanennnin 656

11.6 Bibliographic Notes and ExXercises.uuuruinsuneieiseneeeanens 661
Chapter 12 UNIX, Mach, and OSF/1 for Parallel Computers....... 667
12.1 Multiprocessor UNIX Design Goalsooiiiiiiiiiiinnnnninn, 667
12.1.2 Compatibility and Portability...............ooiiiiiiiiiiitn. 670

12.1.3 Address Space and Load Balancing, 671

12.1.4 Parallel I/O and Network Services.............cooovviiinin... 671

12.2 Master-Slave and Multithreaded UNIX i ... 672
1221 Master-Slave Kernels - X) X 672

12.2.2 Floating-Executive Kernels oo, 674
122.3 Multithreaded UNIX Kernel 678

12.3 Multicomputer UNIX Extensionsccoiiiiiiriiiienninninnnn, 683
12.3.1 Message-Passing OS Models, 683

12.3.2 Cosmic Environment and Reactive Kernel..................... 683

12.3.3 Intel NX/2 Kernel and Extensionsccoiieeeiunennn.. 685

124 Mach/OS Kernel Architecturecooviiiiiiiiiiiiiaa... 686
12.4.1 Mach/OS Kernel Functionscvureiiiiruneeeinnnenn, 687

12.4.2 Multithreaded Multitasking.............cooiiiiiiiiiiiiinn. 688

xvi Contents

12.4.3 Message-Based Communications............covivvvivniinenn. 694

12.44 Virtual Memory Management........o.oueiueueneeisesacsanns 697

12.5 OSF/1 Architecture and Applications............coovviiiinivnnneennans 701
12.5.1 The OSF/1 Architecture.oovvueiieiinirinnrnnnnnnns 702

12.5.2 The OSF/1 Programming Environment 707

12.5.3 Improving Performance with Threads......................... 709

12.6 Bibliographic Notes and Exercises.coiiiiiiiiiinninnnnn., 712

12 3 0) T oY o) o PP 717
| F10 Lo S PP £~ 1

Answers to Selected Problems 0. TGS

Foreword

by Gordon Bell

Kai Hwang has introduced the issues in designing and using high performance
parallel computers at a time when a plethora of scalable computers utilizing commodity
microprocessors offer higher peak performance than traditional vector supercomputers.
These new machines, their operating environments including the operating system and
languages, and the programs to effectively utilize them are introducing more rapid
changes for researchers, builders, and users than at any time in the history of computer
structures.

For the first time since the introduction of Cray 1 vector processor in 1975, it may
again be necessary to change and evolve the programming paradigm — provided that
massively parallel computers can be shown to be useful outside of research on massive
parallelism. Vector processors required modest data parallelism and these operations
have been reflected either explicitly in Fortran programs or implicitly with the need to
evolve Fortran (e.g., Fortran 90) to build in vector operations.

So far, the main line of supercomputing as measured by the usage (hours, jobs,
number of programs, program portability) has been the shared memory, vector multi-
processor as pioneered by Cray Research. Fujitsu, IBM, Hitachi, and NEC all produce
computers of this type. In 1993, the Cray C90 supercomputer delivers a peak of 16
billion floating-point operations per second (a Gigaflops) with 16 processors and costs
about $30 million, providing roughly 500 floating-point operations per second per dollar.

In contrast, massively parallel computers introduced in the early 1990s are nearly
all based on utilizing the same powerful, RISC-based, CMOS microprocessors that are
used in workstations. These scalar processors provide a peak of =~ 100 million floating-
point operations per second and cost $20 thousand, providing an order of magnitude
more peak per dollar (5000 flops per dollar). Unfortunately, to obtain peak power
requires large-scale problems that can require O(n®) operations over supers, and this
significantly increases the running time when peak power is the goal.

Xvii

xviii Foreword

The multicomputer approach interconnects computers built from microprocessors
through high-bandwidth switches that introduce latency. Programs are written in ei-
ther an evolved parallel data model utilizing Fortran or as independent programs that
communicate by passing messages. The book describes a variety of multicomputers
including Thinking Machines’ CM35, the first computer announced that could reach a
teraflops using 8K independent computer nodes, each of which can deliver 128 Mflops
utilizing four 32-Mflops floating-point units.

The architecture research trend is toward scalable, shared-memory multiprocessors
in order to handle general workloads ranging from technical to commercial tasks and
workloads, negate the need to explicitly pass messages for communication, and pro-
vide memory addressed accessing. KSR's scalable multiprocessor and Stanford’s Dash

prototype have proven that such machines are possible.

The author starts by positing a framework based on evolution that outlines the
main approaches to designing computer structures. He covers both the scaling of com-
puters and workloads, various multiprocessors, vector processing, multicomputers, and
emerging scalable or multithreaded multiprocessors. The final three chapters describe
parallel programming techniques and discuss the host operating environment necessary
to utilize these new computers. |

The book provides case studies of both industrial and research computers, including
the Illinois Cedar, Intel Paragon, TMC CM-2, MasPar M1, TMC CM-5, Cray Y-MP,
C-90, and Cray MPP, Fujitsu VP2000 and VPP500, NEC SX, Stanford Dash, KSR-1,
MIT J-Machine, MIT *T, ETL EM-4, Caltech Mosaic C, and Tera Computer.

The book presents a balanced treatment of the theory, technology, architecture,
and software of advanced computer systems. The emphasis on parallelism, scalability,
and programmability makes this book rather unique and educational.

I highly recommend Dr. Hwang’s timely book. I believe it will benefit many readers
and be a fine reference.

C. Gordon Bell

Preface

The Aims

This book provides a comprehensive study of scalable and parallel computer ar-
chitectures for achieving a proportional increase in performance with increasing system
resources. System resources are scaled by the number of processors used, the mem-
ory capacity enlarged, the access latency tolerated, the /O bandwidth required, the
performance level desired, etc.

Scalable architectures delivering a sustained performance are desired in both se-
quential and parallel computers. Parallel architecture has a higher potential to deliver
scalable performance. The scalability varies with different architecture-algorithm com-
binations. Both hardware and software issues need to be studied in building scalable
computer systems.

It is my intent to put the reader in a position to design scalable computer systems.
Scalability is defined in a broader sense to reflect the interplay among architectures,
algorithms, software, and environments. The integration between hardware and software
is emphasized for building cost-effective computers.

We should explore cutting-edge technologies in scalable parallel computing. Sys-
tems architecture is thus studied with generality, scalability, programmability, and per-
formability in mind.

Since high technology changes so rapidly, I have presented the material in a generic
manner, unbiased toward particular machine implementations. Representative proces-
sors and systems are presented only if they contain important features which may last
into the future.

Every author faces the same dilemma in writing a technology-dependent book which
may become obsolete quickly. To cope with the problem, frequent updates with newer
editions become a necessity, and I plan to make revisions every few years in the future.

XiX

The Contents

This book consists of twelve chapters divided into four parts covering theory, tech-

nology, architecture, and software aspects of parallel and vector computers as shown in
the flowchart:

Electrical Engineering Track i Computer Science Track

~
Cha 1: 2:
> PartI:
Chapter 3:
Performance, Theory
Scalability
.. I A
(
htl-nr,(hn"mw,‘:um (CS bw m)
Part II: < i
Technology - o]
Bus, Cache, wn&
Memory Superscalar
-------- ESe e
Chapter 7: ter 8: . a
M vector, :
Multicomputers SIMD Machines
Part I11: < .
Architectures ! |
Chapter 9: .
Muldtluuded . |
Architectures
________ . —L_(EE optional) S
; Chapter 10:
(EE optional) i Models, Compilers
B Part 1IV:
B
£ 11: ter 12
B hm:rmgm Chpnlel
; Development UNIX

Readers’ Guide

Preface xxi

Part | presents principles of parallel processing in three chapters. These include
parallel computer models, scalability analysis, theory of parallelism, data dependences,
program flow mechanisms, network topologies, benchmark measures, performance laws,
and program behaviors. These chapters lay the necessary foundations for readers to
study hardware and software in subsequent chapters.

In Part II, three chapters are devoted to studying advanced processors, cache and
memory technology, and pipelining techniques. Technological bases touched include
RISC, CISC, superscalar, superpipelining, and VLIW architectures. Shared memory,
consistency models, cache architecture, and coherence protocols are studied.

Pipelining is extensively applied in memory-access, instruction execution, scalar,
superscalar, and vector arithmetic operations. Instruction prefetch, data forwarding,
software interlocking, scoreboarding, branch handling, and out-of-order issue and com-
pletion are studied for designing advanced processors.

In Part III, three chapters are provided to cover shared-memory multiprocessors,
vector and SIMD supercomputers, message-passing multicomputers, and scalable or
multithreaded architectures. Since we emphasize scalable architectures, special treat-
ment is given to the IEEE Futurebus+ standards, multistage networks, cache coher-
ence, latency tolerance, fast synchronization, and hierarchical and multidimensional
structures for building shared-memory systems.

Massive parallelism is addressed in message-passing systems as well as in syn-
chronous SIMD computers. Shared virtual memory and multithreaded architectures
are the important topics, in addition to compound vector processing on pipelined su-
percomputers and coordinated data parallelism on the CM-5.

Part IV consists of three chapters dealing with parallel programming models, mul-
tiprocessor UNIX, software environments, and compiler development for parallel /vector
computers. Both shared variables and message-passing schemes are studied for inter-
processor communications. Languages, compilers, and software tools for program and
benchmark development and performance monitoring are studied.

Among various UNIX extensions, we discuss master-slave, floating-executive, and
multithreaded kernels for resource management in a network of heterogeneous computer
systems. The Mach/OS and OSF/1 are studied as example systems.

This book has been completely newly written based on recent material. The con-
tents are rather different from my earlier book coauthored with Dr. Faye Briggs in 1983.
The two books, separated by 10 years, have very little in common.

The Andience

The material included in this text is an outgrowth of two graduate-level courses:
Computer Systems Architecture (EE 557) and Parallel Processing (EE 657) that I have
taught at the University of Southern California, the University of Minnesota (Spring
1989), and National Taiwan University (Fall 1991) during the last eight years.

The book can be adopted as a textbook in senior- or graduate-level courses offered
by Computer Science (CS), Computer Engineering (CE), Electrical Engineering (EE),
or Computational Science programs. The flowchart guides the students and instructors
in reading this book.

xxii Preface

The first four chapters should be taught to all disciplines. The three technology
chapters are necessary for EE and CE students. The three architecture chapters can be
selectively taught to CE and CS students, depending on the instructor’s interest and
the computing facilities available to teach the course. The three software chapters are
written for CS students and are optional to EE students.

Five course outlines are suggested below for different audiences. The first three
outlines are for 45-hour, one-semester courses. The last two outlines are for two-quarter
courses in a sequence.

(1) For a Computer Science course on Parallel Computers and Programming, the
minimum coverage should include Chapters 1-4, 7, and 9-12.

(2) For an exclusive Electrical Engineering course on Advanced Computer Architec-
ture, the minimum coverage should include Chapters 1-9.

(3) For a joint CS and EE course on Parallel Processing Computer Systems, the
minimum coverage should include Chapters 1-4 and 7-12.

(4) Chapters 1 through 6 can be taught to a senior or first-year graduate course
under the title Computer Architecture in one quarter (10 weeks / 30 hours).

(5) Chapters 7 through 12 can be taught to a graduate course on Parallel Computer
Architecture and Programming in a one-quarter course with course (4) as the
prerequisite.

Instructors may wish to include some advanced research topics treated in Sections
1.4, 2.3, 3.4, 54, 6.2, 6.5, 7.2, 7.3, 8.3, 104, 11.1, 12.5, and selected sections from
Chapter 9 in each of the above course options. The architecture chapters present four
different families of commercially available computers. Instructors may choose to teach
a subset of these machine families based on the accessibility of corresponding machines
on campus or via a public network. Students are encouraged to learn through hands-on
programming experience on parallel computers.

A Solutions Manual is available to instructors only from the Computer Science
Editor, College Division, McGraw-Hill, Inc., 1221 Avenue of the Americas, New York,
NY 10020. Answers to a few selected exercise problems are given at the end of the book.

The Prerequisites

This is an advanced text on computer architecture and parallel programming. The
reader should have been exposed to some basic computer organization and program-
ming courses at the undergraduate level. Some of the required background material
can be found in Computer Architecture: A Quantitative Approach by John Hennessy
and David Patterson (Morgan Kaufman, 1990) or in Machine and Assembly Language
Programming by Arthur Gill (Prentice-Hall, 1978).

Students should have some knowledge and experience in logic design, computer
hardware, system operations, assembly languages, and Fortran or C programming. Be-
cause of the emphasis on scalable architectures and the exploitation of parallelism in
practical applications, readers will find it useful to have some background in probability,
discrete mathematics, matrix algebra, and optimization theory.

Preface XXiil

Acknowledgments

I have tried to identify all sources of information in the bibliographic notes. As
the subject area evolves rapidly, omissions are almost unavoidable. I apologize to those
whose valuable work has not been included in this edition. I am responsible for all
omissions and for any errors found in the book. Readers are encouraged to contact me
directly regarding error correction or suggestions for future editions.

The writing of this book was inspired, taught, or assisted by numerous scholars
or specialists working in the area. I would like to thank each of them for intellectual
exchanges, valuable suggestions, critical reviews, and technical assistance.

First of all, I want to thank a number of my former and current Ph.D. students.
Hwang-Cheng Wang has assisted me in producing the entire manuscript in IATpX. Be-
sides, he has coauthored the Solutions Manual with Jung-Gen Wu, who visited USC dur-
ing 1992. Weihua Mao has drawn almost all the figure illustrations using FrameMaker,
based on my original sketches. I want to thank D.K. Panda, Joydeep Ghosh, Ahmed
Louri, Dongseung Kim, Zhi-Wei Xu, Sugih Jamin, Chien-Ming Cheng, Santosh Rao,
Shisheng Shang, Jih-Cheng Liu, Scott Toborg, Stanley Wang, and Myungho Lee for
their assistance in collecting material, proofreading, and contributing some of the home-
work problems. The errata from Teerapon Jungwiwattanaporn were also useful. The
Index was compiled by H.C. Wang and J.G. Wu jointly.

I want to thank Gordon Bell for sharing his insights on supercomputing with me
and for writing the Foreword to motivate my readers. John Hennessy and Anoop Gupta
provided the Dash multiprocessor-related results from Stanford University. Charles
Seitz has taught me through his work on Cosmic Cube, Mosaic, and multicomputers.
From MIT, I received valuable inputs from the works of Charles Leiserson, William
Dally, Anant Agarwal, and Rishiyur Nikhil. From University of Illinois, I received the
Cedar and Perfect benchmark information from Pen Yew.

Jack Dongarra of the University of Tennessee provided me the Linpack benchmark
results. James Smith of Cray Research provided up-to-date information on the C-
90 clusters and on the Cray/MPP. Ken Miura provided the information on Fujitsu
VPP500. Lionel Ni of Michigan State University helped me in the areas of performance
laws and adaptive wormhole routing. Justin Ratter provided information on the Intel
Delta and Paragon systems. Burton Smith provided information on the Tera computer
development.

Harold Stone and John Hayes suggested corrections and ways to improve the pre-
sentation. H.C. Torng of Cornell University, Andrew Chien of University of Illinois,
and Daniel Tobak of George-Mason University made useful suggestions. Among my
colleagues at the University of Southern California, Jean-Luc Gaudiot, Michel Dubois,
Rafael Saavedra, Monte Ung, and Viktor Prasanna have made concrete suggestions to
improve the manuscript. | appreciate the careful proofreading of an earlier version of
the manuscript by D.K. Panda of the Ohio State University. The inputs from Vipin
Kumar of the University of Minnesota, Xian-He Sun of NASA Langley Research Center,
and Alok Choudhary of Syracuse University are also appreciated.

In addition to the above individuals, my understanding on computer architecture
and parallel processing has been influenced by the works of David Kuck, Ken Kennedy,

XXiV Preface

Jack Dennis, Michael Flynn, Arvind, T.C. Chen, Wolfgang Giloi, Harry Jordan, H.T.
Kung, John Rice, H.J. Siegel, Allan Gottlieb, Philips Treleaven, Faye Briggs, Peter
Kogge, Steve Chen, Ben Wah, Edward Davidson, Alvin Despain, James Goodman,
Robert Keller, Duncan Lawrie, C.V. Ramamoorthy, Sartaj Sahni, Jean-Loup Baer,
Milos Ercegovac, Doug DeGroot, Janak Patel, Dharma Agrawal, Lenart Johnsson, John
Gustafson, Tse-Yun Feng, Herbert Schewetman, and Ken Batcher. I want to thank all
of them for sharing their vast knowledge with me.

I want to acknowledge the research support [have received from the National
Science Foundation, the Office of Naval Research, the Air Force Office of Scientific Re-
search, International Business Machines, Intel Corporation, Alliant Computer Systems,
and American Telephone and Telegraph Laboratories.

Technical exchanges with the Electrotechnical Laboratory (ETL) in Japan, the
German National Center for Computer Research (GMD) in Germany, and the Industrial
Technology Research Institute (ITRI) in Taiwan are always rewarding experiences to
the author.

I appreciate the staff and facility support provided by Purdue University, the Uni-
versity of Southern California, the University of Minnesota, the University of Tokyo,
National Taiwan University, and Academia Sinica during the past twenty years. In par-
ticular, I appreciate the encouragement and professional advices received from Henry
Yang, Lofti Zadeh, Richard Karp, George Bekey, Authur Gill, Ben Coates, Melvin
Breuer, Jerry Mendel, Len Silverman, Solomon Golomb, and Irving Reed over the years.

Excellent work by the McGraw-Hill editorial and production staff has greatly im-
proved the readability of this book. In particular, I want to thank Eric Munson for his
continuous sponsorship of my book projects. I appreciate Joe Murphy and his coworkers
for excellent copy editing and production jobs. Suggestions from reviewers listed below
have greatly helped improve the contents and presentation.

The book was completed at the expense of cutting back many aspects of my life,
spending many long hours, evenings, and weekends in seclusion during the last several
years. I appreciate the patience and understanding of my friends, my students, and my
family members during those tense periods. Finally, the book has been completed and
I hope you enjoy reading it.

Kai Hwang

Reviewers:

Andrew A. Chien, University of Illinois;

David Culler, University of California, Berkeley:
Ratan K. Guha, University of Central Florida;
John P. Hayes, University of Michigan;

John Hennessy, Stanford University;

Dhamir Mannai, Northeastern University;
Michael Quinn, Oregon State University,

H. J. Siegel, Purdue University;

Daniel Tabak, George-Mason University.

ADVANCED COMPUTER ARCHITECTURE:
Parallelism, Scalability, Programmability

Copyrighted material

Part 1
Theory of Parallelism

Chapter 1
Parallel Computer Models

Chapter 2
Program and Network Properties

Chapter 3
Principles of Scalable Performance

Summary

This theoretical part presents computer models, program behavior, architec-
tural choices, scalability, programmability, and performance issues related to par-
allel processing. These topics form the foundations for designing high-performance
computers and for the development of supporting software and applications.

Physical computers modeled include shared-memory multiprocessors, message-
passing multicomputers, vector supercomputers, synchronous processor arrays, and
massively parallel processors. The theoretical parallel random-access machine
(PRAM) model is also presented. Differences between the PRAM model and phys-
ical architectural models are discussed. The VLSI complexity model is presented
for implementing parallel algorithms directly in integrated circuits.

Network design principles and parallel program characteristics are introduced.
These include dependence theory, computing granularity, communication latency,
program flow mechanisms, network properties, performance laws, and scalability
studies. This evolving theory of parallelism consolidates our understanding of par-
allel computers, from abstract models to hardware machines, software systems, and
performance evaluation.

Chapter 1

Parallel Computer Models

Parallel processing has emerged as a key enabling technology in modern com-
puters, driven by the ever-increasing demand for higher performance, lower costs, and
sustained productivity in real-life applications. Concurrent events are taking place in
today’s high-performance computers due to the common practice of multiprogramming,
multiprocessing, or multicomputing.

Parallelism appears in various forms, such as lookahead, pipelining, vectorization,
concurrency, simultaneity, data parallelism, partitioning, interleaving, overlapping, mul-
tiplicity, replication, time sharing, space sharing, multitasking, multiprogramming, mul-
tithreading, and distributed computing at different processing levels.

In this chapter, we model physical architectures of parallel computers, vector super-
computers, multiprocessors, multicomputers, and massively parallel processors. Theo-
retical machine models are also presented, including the parallel random-access machines
(PRAMs) and the complexity model of VLSI (very large-scale integration) circuits. Ar-
chitectural development tracks are identified with case studies in the book. Hardware
and software subsystems are introduced to pave the way for detailed studies in subse-
quent chapters.

1.1 The State of Computing

Modern computers are equipped with powerful hardware facilities driven by exten-
sive software packages. To assess state-of-the-art computing, we first review historical
milestones in the development of computers. Then we take a grand tour of the crucial
hardware and software elements built into modern computer systems. We then examine
the evolutional relations in milestone architectural development. Basic hardware and
software factors are identified in analyzing the performance of computers.

1.1.1 Computer Development Milestones

Computers have gone through two major stages of development: mechanical and
electronic. Prior to 1945, computers were made with mechanical or electromechanical

3

4 Parallel Computer Models

parts. The earliest mechanical computer can be traced back to 500 BC in the form of the
abacus used in China. The abacus is manually operated to perform decimal arithmetic
with carry propagation digit by digit.

Blaise Pascal built a mechanical adder/subtractor in France in 1642. Charles Bab-
bage designed a difference engine in England for polynomial evaluation in 1827. Konrad
Zuse built the first binary mechanical computer in Germany in 1941. Howard Aiken
proposed the very first electromechanical decimal computer, which was built as the
Harvard Mark I by IBM in 1944. Both Zuse’s and Aiken’s machines were designed for
general-purpose computations.

Obviously, the fact that computing and communication were carried out with mov-
ing mechanical parts greatly limited the computing speed and reliability of mechanical
computers. Modern computers were marked by the introduction of electronic com-
ponents. The moving parts in mechanical computers were replaced by high-mobility
electrons in electronic computers. Information transmission by mechanical gears or
levers was replaced by electric signals traveling almost at the speed of light.

Computer Generations Over the past five decades, electronic computers have gone
through five generations of development. Table 1.1 provides a summary of the five
generations of electronic computer development. Each of the first three generations
lasted about 10 years. The fourth generation covered a time span of 15 years. We have
just entered the fifth generation with the use of processors and memory devices with
more than 1 million transistors on a single silicon chip.

The division of generations is marked primarily by sharp changes in hardware
and software technologies. The entries in Table 1.1 indicate the new hardware and
software features introduced with each generation. Most features introduced in earlier
generations have been passed to later generations. In other words, the latest generation
computers have inherited all the nice features and eliminated all the bad ones found in
previous generations.

Progress in Hardware As far as hardware technology is concerned, the first gener-
ation (1945-1954) used vacuum tubes and relay memories interconnected by insulated
wires. The second generation (1955-1964) was marked by the use of discrete transistors,
diodes, and magnetic ferrite cores, interconnected by printed circuits.

The third generation (1965-1974) began to use integrated circuits (ICs) for both
logic and memory in small-scale or medium-scale integration (SSI or MSI) and multi-
layered printed circuits. The fourth generation (1974-1991) used large-scale or very-
large-scale integration (LSI or VLSI). Semiconductor memory replaced core memory as
computers moved from the third to the fourth generation.

The fifth generation (1991-present) is highlighted by the use of high-density and
high-speed processor and memory chips based on even more improved VLSI technology.
For example, 64-bit 150-MHz microprocessors are now available on a single chip with
over one million transistors. Four-megabit dynamic random-access memory (RAM) and
256K-bit static RAM are now in widespread use in today’s high-performance computers.

It has been projected that four microprocessors will be built on a single CMOS
chip with more than 50 million transistors, and 64M-bit dynamic RAM will become

1.1 The State of Computing 5

Table 1.1 Five Generations of Electronic Computers
Generation Technology and Software and Representative
Architecture Applications Systems

First Vacuum tubes and relay Machine/assembly lan- ENIAC,

(1945-54) memories, CPU driven by |guages, single user, no sub- | Princeton IAS,
PC and accumulator, routine linkage, IBM 701.
fixed-point arithmetic. programmed [/O using CPU.

Second Discrete transistors and HLL used with compilers, IBM 7090,

(1955-64) core memories, subroutine libraries, batch CDC 1604,
floating-point arithmetic, processing monitoy. Univac LARC.
I/O processors, multiplexed
memory access.

Third Integrated circuits (SSI/- | Multiprogramming and time- | IBM 360/370,

(1965-74) MSI), microprogramming, [sharing OS, multiuser appli- | CDC 6600,
pipelining, cache, and cations. TI-ASC,
lookahead processors. PDP-8.

Fourth LSI/VLSI and semiconduc- | Multiprocessor OS, langua- | VAX 9000,

(1975-90) tor memory, multiproces- ges, compilers, and environ- |Cray X-MP,
sors, vector supercomput- ments for parallel processing. | IBM 3090,
ers, multicomputers. BBN TC2000.

Fifth ULSI/VHSIC processors, Massively parallel process- Fujitsu VPP500,

(1991~ memory, and switches, ing, grand challenge applica- | Cray/MPP,

present) high-density packaging, tions, heterogeneous TMC/CM-5,
scalable architectures. processing. Intel Paragon.

available in large quantities within the next decade.

The First Generation

From the architectural and software points of view, first-

generation computers were built with a single central processing unit (CPU) which
performed serial fixed-point arithmetic using a program counter, branch instructions,
and an accumulator. The CPU must be involved in all memory access and input/output
(I/O) operations. Maclune or assembly languages were used.

Representative systems include the ENIAC (Electronic Numerical Integrator and
Calculator) built at the Moore School of the University of Pennsylvania in 1950; the
IAS (Institute for Advanced Studies) computer based on a design proposed by John
von Neumann, Arthur Burks, and Herman Goldstine at Princeton in 1046; and the
IBM 701, the first electromic stored-program commercial computer built by IBM in
1953. Subroutine linkage was not implemented in early computers.

The Second Generation Index registers, floating-point arithmetic, multiplexed
memory, and I/O processors were introduced with second-generation computers. High-
level languages (HLLs), such as Fortran, Algol, and Cobol, were introduced along with
compilers, subroutine libraries, and batch processing monitors. Register transfer lan-
guage was developed by Irving Reed (1957) for systematic design of digital computers.

Representative systems include the IBM 7030 (the Stretch computer) featuring

6 Parallel Computer Models

instruction lookahead and error-correcting memories built in 1962, the Univac LARC
(Livermore Atomic Research Computer) built in 1959, and the CDC 1604 built in the
1960s.

The Third Generation The third generation was represented by the IBM/360-
370 Series, the CDC 6600/7600 Series, Texas Instruments ASC (Advanced Scientific
Computer), and Digital Equipment’s PDP-8 Series from the mid-1960s to the mid-
1970s.

Microprogrammed control became popular with this generation. Pipelining and
cache memory were introduced to close up the speed gap between the CPU and main
memory. The idea of multiprogramming was implemented to interleave CPU and 1/0
activities across multiple user programs. This led to the development of time-sharing
operating systems (OS) using virtual memory with greater sharing or multiplexing of
resources.

The Fourth Generation Parallel computers in various architectures appeared in
the fourth generation of computers using shared or distributed memory or optional
vector hardware. Multiprocessing OS, special languages, and compilers were developed
for parallelism. Software tools and environments were created for parallel processing or
distributed computing.

Representative systems include the VAX 9000, Cray X-MP, IBM/3090 VF, BBN
TC-2000, etc. During these 15 years (1975-1990), the technology of parallel processing
gradually became mature and entered the production mainstream.

The Fifth Generation Fitth-generation computers have just begun to appear.
These machines emphasize massively parallel processing (MPP). Scalable and latency-
tolerant architectures are being adopted in MPP systems using VLSI silicon, GaAs
technologies, high-density packaging, and optical technologies.

Fifth-generation computers are targeted to achieve Teraflops (10'? floating-point
operations per second) performance by the mid-1990s. Heterogeneous processing is
emerging to solve large-scale problems using a network of heterogeneous computers with
shared virtual memories. The fifth-generation MPP systems are represented by several
recently announced projects at Fujitsu (VPP500), Cray Research (MPP), Thinking
Machines Corporation (the CM-5), and Intel Supercomputer Systems (the Paragon).

1.1.2 Elements of Modern Computers

Hardware, software, and programming elements of a modern computer system are
briefly introduced below in the context of parallel processing.

Computing Problems It has been long recognized that the concept of computer
architecture is no longer restricted to the structure of the bare machine hardware. A
modern computer is an integrated system consisting of machine hardware, an instruction
set, system software, application programs, and user interfaces. These system elements
are depicted in Fig. 1.1. The use of a computer is driven by real-life problems demanding

1.1 The State of Computing 7

fast and accurate solutions. Depending on the nature of the problems, the solutions may
require different computing resources.

For numerical problems in science and technology, the solutions demand complex
mathematical formulations and tedious integer or floating-point computations. For
alphanumerical problems in business and government, the solutions demand accurate
transactions, large database management, and information retrieval operations.

For artificial intelligence (Al) problems, the solutions demand logic inferences and
symbolic manipulations. These computing problems have been labeled numerical com-
puting, transaction processing, and logical reasoning. Some complex problems may de-
mand a combination of these processing modes.

Figure 1.1 Elements of a modern computer system.

Algorithms and Data Structures Special algorithms and data structures are needed
to specify the computations and communications involved in computing problems. Most
numerical algorithms are deterministic, using regularly structured data. Symbolic pro-
cessing may use heuristics or nondeterministic searches over large knowledge bases.
Problem formulation and the development of parallel algorithms often require in-
terdisciplinary interactions among theoreticians, experimentalists, and computer pro-
grammers. There are many bdoks dealing with the design and mapping of algorithms
or heuristics onto parallel computers. In this book, we are more concerned about the

8 Parallel Computer Models

resources mapping problem than about the design and analysis of parallel algorithms.

Hardware Resources The system architecture of a computer is represented by three
nested circles on the right in Fig. 1.1. A modern computer system demonstrates its
power through coordinated efforts by hardware resources, an operating system, and ap-
plication software. Processors, memory, and peripheral devices form the hardware core
of a computer system. We will study instruction-set processors, memory organization,
multiprocessors, supercomputers, multicomputers, and massively parallel computers.

Special hardware interfaces are often built into I/O devices, such as terminals,
workstations, optical page scanners, magnetic ink character recognizers, modems, file
servers, voice data entry, printers, and plotters. These peripherals are connected to
mainframe computers directly or through local or wide-area networks.

In addition, software interface programs are needed. These software interfaces
include file transfer systems, editors, word processors, device drivers, interrupt handlers,
network communication programs, etc. These programs greatly facilitate the portability
of user programs on different machine architectures.

Operating System An effective operating system manages the allocation and deal-
location of resources during the execution of user programs. We will study UNIX
extensions for multiprocessors and multicomputers in Chapter 12. Mach/OS kernel
and OSF/1 will be specially studied for multithreaded kernel functions, virtual mem-
ory management, file subsystems, and network communication services. Beyond the
OS, application software must be developed to benefit the users. Standard benchmark®
programs are needed for performance evaluation.

Mapping is a bidirectional process matching algorithmic structure with hardware
architecture, and vice versa. Efficient mapping will benefit the programmer and produce
better source codes. The mapping of algorithmic and data structures onto the machine
architecture includes processor scheduling, memory maps, interprocessor communica-
tions, etc. These activities are usually architecture-dependent.

Optimal mappings are sought for various computer architectures. The implemen-
tation of these mappings relies on efficient compiler and operating system support.
Parallelism can be exploited at algorithm design time, at program time, at compile
time, and at run time. Techniques for exploiting parallelism at these levels form the
core of parallel processing technology.

System Software Support Software support is needed for the development of effi-
cient programs in high-level languages. The source code written in a HLL must be first
translated into object code by an optimizing compiler. The compiler assigns variables to
registers or to memory words and reserves functional units for operators. An assembler
is used to translate the compiled object code into machine code which can be recognized
by the machine hardware. A loader is used to initiate the program execution through
the OS kernel.

Resource binding demands the use of the compiler, assembler, loader, and OS kernel
to commit physical machine resources to program execution. The effectiveness of this
process determines the efficiency of hardware utilization and the programmability of the

1.1 The State of Computing 9

computer. Today, programming parallelism is still very difficult for most programmers
due to the fact that existing languages were originally developed for sequential comput-
ers. Programmers are often forced to program hardware-dependent features instead of
programming parallelism in a generic and portable way. Ideally, we need to develop a
parallel programming environment with architecture-independent languages, compilers,
and software tools.

To develop a parallel language, we aim for efficiency in its implementation, porta-
bility across different machines, compatibility with existing sequential languages, ex-
pressiveness of parallelism, and ease of programming. One can attempt a new language
approach or try to extend existing sequential languages gradually. A new language
approach has the advantage of using explicit high-level constructs for specifying par-
allelism. However, new languages are often incompatible with existing languages and
require new compilers or new passes to existing compilers. Most systems choose the
language extension approach.

Compiler Support There are three compiler upgrade approaches: preprocessor,
precompiler, and parallelizing compiler. A preprocessor uses a sequential compiler and
a low-level library of the target computer to implement high-level parallel constructs.
The precompiler approach requires some program flow analysis, dependence checking,
and limited optimizations toward parallelism detection. The third approach demands
a fully developed parallelizing or vectorizing compiler which can automatically detect
parallelism in source code and transform sequential codes into parallel constructs. These
approaches will be studied in Chapter 10,

The efficiency of the binding process depends on the effectiveness of the preproces-
sor, the precompiler, the parallelizing compiler, the loader, and the OS support. Due to
unpredictable program behavior, none of the existing compilers can be considered fully
automatic or fully intelligent in detecting all types of parallelism. Very often compiler
directives are inserted into the source code to help the compiler do a better job. Users
may interact with the compiler to restructure the programs. This has been proven useful
in enhancing the performance of parallel computers.

1.1.3 Evolution of Computer Architecture

The study of computer architecture involves both hardware organization and pro-
gramming/software requirements. As seen by an assembly language programmer, com-
puter architecture is abstracted by its instruction set, which includes opcode (operation
codes), addressing modes, registers, virtual memory, etc.

From the hardware implementation point of view, the abstract machine is orga-
nized with CPUs, caches, buses, microcode, pipelines, physical memory, etc. Therefore,
the study of architecture covers both instruction-set architectures and machine imple-
mentation organizations.

Over the past four decades, computer architecture has gone through evolutional
rather than revolutional changes. Sustaining features are those that were proven per-
formance deliverers. As depicted in Fig. 1.2, we started with the von Neumann architec-
ture built as a sequential machine executing scalar data. The sequential computer was

10 Parallel Computer Models

improved from bit-serial to word-parallel operations, and from fixed-point to floating-
point operations. The von Neumann architecture is slow due to sequential execution of
instructions in programs.

Legends:
I/E: Instruction Fetch and Execute.

SIMD: Single Instruction stream and
Multiple Data streams.

MIMD: Multiple Instruction streams
and Multiple Data streams.

@ ! @whor'@ uﬁ WOCESE
Massively parallel
processors (MPP)

Figure 1.2 Tree showing architectural evolution from sequential scalar computers
to vector processors and parallel computers.

Lookahead, Parallelism, and Pipelining Lookahead techniques were introduced
to prefetch instructions in order to overlap I/E (instruction fetch/decode and execution)
operations and to enable functional parallelism. Functional parallelism was supported
by two approaches: One is to use multiple functional units simultaneously, and the other
is to practice pipelining at various processing levels.

The latter includes pipelined instruction execution, pipelined arithmetic compu-
tations, and memory-access operations. Pipelining has proven especially attractive in

1.1 The State of Computing 11

performing identical operations repeatedly over vector data strings. Vector operations
were originally carried out implicitly by software-controlled looping using scalar pipeline
Processors.

Flynn's Classification Michael Flynn (1972) introduced a classification of various
computer architectures based on notions of instruction and data streams. As illus-
trated in Fig. 1.3a, conventional sequential machines are called SISD (single instruction
stream over a single data stream) computers. Vector computers are equipped with scalar
and vector hardware or appear as SIMD (single instruction streamn over multiple data
streams) machines (Fig. 1.3b). Parallel computers are reserved for MIMD (multiple
instruction streams over multiple data streams) machines.

An MISD (multiple instruction streams and a single data stream) machines are
modeled in Fig. 1.3d. The same data stream flows through a linear array of processors
executing different instruction streams. This architecture is also known as systolic
arrays (Kung and Leiserson, 1978) for pipelined execution of specific algorithms.

Of the four machine models, most parallel computers built in the past assumed the
MIMD model for general-purpose computations. The SIMD and MISD models are more
suitable for special-purpose computations. For this reason, MIMD is the most popular
model, SIMD next, and MISD the least popular model being applied in commercial
machines.

Parallel/Vector Computers Intrinsic parallel computers-are those that execute
programs in MIMD mode. There are two major classes of parallel computers, namely,
shared-memory multiprocessors and message-passing multicomputers. The major dis-
tinction between multiprocessors and multicomputers lies in memory sharing and the
mechanisms used for interprocessor communication.

The processors in a multiprocessor system communicate with each other through
shared variables in a common memory. Each computer node in a2 multicomputer system
has a local memory, unshared with other nodes. Interprocessor communication is done
through message passing among the nodes.

Explicit vector instructions were introduced with the appearance of vector proces-
sors. A vector processor is equipped with multiple vector pipelines that can be con-
currently used under hardware or firmware control. There are two families of pipelined
vector processors:

Memory-to-memory architecture supports the pipelined flow of vector operands
directly from the memory to pipelines and then back to the memory. Register-to-
register architecture uses vector registers to interface between the memory and func-
tional pipelines. Vector processor architectures will be studied in Chapter 8.

Another important branch of the architecture tree consists of the SIMD computers
for synchronized vector processing. An SIMD computer exploits spatial parallelism
rather than temporal parallelism as in a pipelined computer. SIMD computing is
- achieved through the use of an array of processing elements (PEs) synchronized by the
same controller. Associative memory can be used to build SIMD associative processors.
SIMD machines will be treated in Chapter 8 along with pipelined vector computers.

12 Parallel Computer Models

£

" i'sos Pmmgmnlod:: @ 'S E 5 >

(a) SISD uniprocessor architecture (b) SIMD architecture (with distributed memory)

Captions:

CU = Control Unit

PU = Processing Unit VO
MU = Memory Unit

IS = Instruction Stream

DS = Data Stream Vo
PE = Processing Element

LM = Local Memory

(c) MIMD architecture (with shared memory)

(d) MISD architecture (the systolic array)

Figure 1.3 Flynn's classification of computer architectures. (Derived from Michael

Flynn, 1972)
Applications | T
Programming Environment Machine
T Languages Supported | '
Machine Mmuucaﬁon Mode! l
Dependent Addremg Space
L Hardware Architecture

Figure 1.4 Six layers for computer system development. (Courtesy of Lionel Ni, 1990)

1.1 The State of Computing 13

Development Layers A layered development of parallel computers is illustrated in
Fig. 1.4, based on a recent classification by Lionel Ni (1990). Hardware configurations
differ from machine to machine, even those of the same model. The address space of
a processor in a computer system varies among different architectures. It depends on
the memory organization, which is machine-dependent. These features are up to the
designer and should match the target application domains.

On the other hand, we want to develop application programs and programming
environments which are machine-independent. Independent of machine architecture,
the user programs can be ported to many computers with minimum conversion costs.
High-level languages and communication models depend on the architectural choices
made in a computer system. From a programmer’s viewpoint, these two layers should
be architecture-transparent.

At present, Fortran, C, Pascal, Ada, and Lisp are supported by most comput-
ers. However, the communication models, shared variables versus message passing, are
mostly machine-dependent. The Linda approach using tuple spaces offers an architecture-
transparent communication model for parallel computers. These language features will
be studied in Chapter 10.

Application programmers prefer more architectural transparency. However, kernel
programmers have to explore the opportunities supported by hardware. As a good
computer architect, one has to approach the problem from both ends. The compilers
and OS support should be designed to remove as many architectural constraints as
possible from the programmer.

New Challenges The technology of parallel processing is the outgrowth of four
decades of research and industrial advances in microelectronics, printed circuits, high-
density packaging, advanced processors, memory systems, peripheral devices, commu-
nication channels, language evolution, compiler sophistication, operating systems, pro-
gramming environments, and application challenges.

The rapid progress made in hardware technology has significantly increased the
economical feasibility of building a new generation of computers adopting parallel pro-
cessing. However, the major barrier preventing parallel processing from entering the
production mainstream is on the software and application side.

To date, it is still very difficult and painful to program parallel and vector com-
puters. We need to strive for major progress in the software area in order to create
a user-friendly environment for high-power computers. A whole new generation of
programmers need to be trained to program parallelism effectively. High-performance
computers provide fast and accurate solutions to scientific, engineering, business, social,
and defense problems.

Representative real-life problems include weather forecast modeling, computer-
aided design of VLSI circuits, large-scale database management, artificial intelligence,
crime control, and strategic defense initiatives, just to name a few. The application
domains of parallel processing computers are expanding steadily. With a good un-
derstanding of scalable computer architectures and mastery of parallel programming
techniques. the reader will be better prepared to face future computing challenges.

14 Parallel Computer Models

1.1.4 System Attributes to Performance

The ideal performance of a computer system demands a perfect match between ma-
chine capability and program behavior. Machine capability can be enhanced with better
hardware technology, innovative architectural features, and efficient resources manage-
ment. However, program behavior is difficult to predict due to its heavy dependence on
application and run-time conditions.

There are also many other factors affecting program behavior, including algorithm
design, data structures, language efficiency, programmer skill, and compiler technology.
It is impossible to achieve a perfect match between hardware and software by merely
improving only a few factors without touching other factors.

Besides, machine performance may vary from program to program. This makes
peak performance an impossible target to achieve in real-life applications. On the other
hand, a machine cannot be said to have an average performance either. All performance
indices or benchmarking results must be tied to a program mix. For this reason, the
pecformance should be described as a range or as a harmonic distribution.

We introduce below fundamental factors for projecting the performance of a com-
puter. These performance indicators are by no means conclusive in all applications.
However, they can be used to guide system architects in designing better machines or
to educate programmers or compiler writers in optimizing the codes for more efficient
execution by the hardware.

Consider the execution.of a given program on a given computer. The simplest mea-
sure of program performance is the turnaround time, which includes disk and memory
accesses, input and output activities, compilation time, OS overhead, and CPU time.
In order to shorten the turnaround time, one must reduce all these time factors.

In a multiprogrammed computer, the I/O and system overheads of a given program
may overlap with the CPU times required in other programs. Therefore, it is fair to
compare just the total CPU time needed for program execution. The CPU is used to

execute both system programs and user programs. It is the user CPU time that concerns
the user most.

Clock Rate and CPI The CPU (or simply the processor) of today’s digital computer
is driven by a clock with a constant cycle time (7 in nanoseconds). The inverse of the
cycle time is the clock rate (f = 1/7 in megahertz). The size of a program is determined
by its instruction count (I.), in terms of the number of machine instructions to be
executed in the program. Different machine instructions may require different numbers
of clock cycles to execute. Therefore, the cycles per instruction (CPI) becomes an
important parameter for measuring the time needed tc execute each instruction.

For a given instruction set, we can calculate an average CPI over all instruction
types, provided we know their frequencies of appearance in the program. An accurate
estimate of the average CPI requires a large amount of program code to be traced over a
long period of time. Unless specifically focusing on a single instruction type, we simply
use the term CPI to mean the average value with respect to a given instruction set and
a given program mix.

1.1 The State of Computing 15

Performance Factors Let /. be the number of instructions in a given program, or
the instruction count. The CPU time (7 in seconds/program) needed to execute the
program is estimated by finding the product of three contributing factors:

T=I.xCPIlxr (1.1)

The execution of an instruction requires going through a cycle of events involving
the instruction fetch, decode, operand(s) fetch, execution, and store results. In this
cycle, only the instruction decode and execution phases are carried out in the CPU.
The remaining three operations may be required to access the memory. We define a
memory cycle as the time needed to complete one memory reference. Usually, a memory
cycle is k times the processor cycle 7. The value of k depends on the speed of the memory
technology and processor-memory interconnection scheme used.

The CPI of an instruction type can be divided into two component terms cor-
responding to the total processor cycles and memory cycles needed to complete the
execution of the instruction. Depending on the instruction type, the complete instruc-
tion cycle may involve one to four memory references (one for instruction fetch, two for
operand fetch, and one for store results). Therefore we can rewrite Eq. 1.1 as follows:

T=I.x(p+mxk)xr (1.2)

where p is the number of processor cycles needed for the instruction decode and exe-
cution, m is the number of memory references needed, k is the ratio between memory
cycle and processor cycle, . is the instruction count, and 7 is the processor cycle time.
Equation 1.2 can be further refined once the CPI components (p, m, k) are weighted
over the entire instruction set.

System Attributes The above five performance factors (I, p, m, k, 7) are influenced
by four system attributes: instruction-set architecture, compiler technology, CPU im-
plementation and control, and cache and memory hierarchy, as specified in Table 1.2.

The instruction-set architecture affects the program length (I.) and processor cycle
needed (p). The compiler technology affects the values of I, p, and the memory reference
count (m). The CPU implementation and control determine the total processor time
(p- 7) needed. Finally, the memory technology and hierarchy design affect the memory
access latency (k- 7). The above CPU time can be used as a basis in estimating the
execution rate of a processor.

MIPS Rate Let C be the total number of clock cycles needed to execute a given
program. Then the CPU time in Eq. 1.2 can be estimated as T = C x 7 = C/f.
Furthermore, CPI = C/I. and T = I. x CPl x 7 = I. x CPl/f. The processor speed
is often measured in terms of million instructions per second (MIPS). We simply call it
the MIPS rate of a given processor. It should be emphasized that the MIPS rate varies
with respect to a number of factors, including the clock rate (f), the instruction count

(I.), and the CPI of a given machine, as defined below:

I f _ fx1.
MIPS rate = 706 = GPIx 105 — C x 10° (1.3)

16 Parallel Computer Models

Table 1.2 Performance Factors Versus System Attributes

Performance Factors
System ‘Tnstr. | Average Cycles per Instruction, CPI__| Processor
Attributes |[Count,| Processor Memory Memory- | Cycle
I, Cycles per |References per| Access Time,
Instruction, p|Instruction, m | Latency, k T
Instruction-set
Architecture X X
Compiler
Technology I A X
Processor
Implementation X X
and Control
Cache and 1l
Memory X X
Hierarchy

Based on Eq. 1.3, the CPU time in Eq. 1.2 can also be written as T" = I, X
10~%/MIPS. Based on the system attributes identified in Table 1.2 and the above de-

rived expressions, we conclude by indicating the fact that the MIPS rate of a given
computer is directly proportional to the clock rate and inversely proportional to the
CPI. All four system attributes, instruction set, compiler, processor, and memory tech-
nologies, affect the MIPS rate, which varies also from program to program.

Throughput Rate Another important concept is related to how many programs a
system can execute per unit time, called the system throughput W, (in programs/second).
In a multiprogrammed system, the system throughput is often lower than the CPU
throughput W, defined by:

__ 7
W = T x CPI (1.4)

Note that W, = (MIPS)x10°/I, from Eq. 1.3. The unit for W, is programs/second.
The CPU throughput is a measure of how many programs can be executed per second,
based on the MIPS rate and average program length (I.). The reason why W, < W,
is due to the additional system overheads caused by the 1/O, compiler, and OS when
multiple programs are interleaved for CPU execution by multiprogramming or time-
sharing operations. If the CPU is kept busy in a perfect program-interleaving fashion,
then W, = W,. This will probably never happen, since the system overhead often
causes an extra delay and the CPU may be left idle for some cycles.

Example 1.1 MIPS ratings and performance measurement

Consider the use of a VAX /780 and an IBM RS/6000-based workstation to
execute a hypothetical benchmark program. Machine characteristics and claimed
performance are given below:

1.1 The State of Computing 17

Machine Clock | Performance | CPU Time
VAX 11/780 5 MHz 1 MIPS | 12z seconds
IBM RS/6000 | 25 MHz | 18 MIPS z seconds

These data indicate that the measured CPU time on the VAX 11/780 is 12
times longer than that measured on the RS/6000. The object codes running on
the two machines have different lengths due to the differences in the machines and
compilers used. All other overhead times are ignored.

Based on Eq. 1.3, the instruction count of the object code running on the
RS/6000 is 1.5 times longer than that of the code running on the VAX machine.
Furthermore, the average CPI on the VAX /780 is assumed to be 5, while that on
the RS/6000 is 1.39 executing the same benchmark program.

The VAX 11/780 has a typical CISC (complez instruction set computing) ar-
chitecture, while the IBM machine has a typical RISC (reduced instruction set
computing) architecture to be characterized in Chapter 4. This example offers a
simple comparison between the two types of computers based on a single program
run. When a different program is run, the conclusion may not be the same.

We cannot calculate the CPU throughput W, unless we know the program
length and the average CPI of each code. The system throughput W, should be
measured across a large number of programs over a long observation period. The
message being conveyed is that one should not draw a sweeping conclusion about
the performance of a machine based on one or a few program runs.

Programming Environments The programmability of a computer depends on the
programming environment provided to the users. Most computer environments are
not user-friendly. In fact, the marketability of any new computer system depends on
the creation of a user-friendly environment in which programming becomes a joyful
undertaking rather than a nuisance. We briefly introduce below the environmental
features desired in modern computers.

Conventional uniprocessor computers are programmed in a sequential environment
in which instructions are executed one after another in a sequential manaer. In fact,
the original UNIX/OS kernel was designed to respond to one system call from the user
process at a time. Successive system calls must be serialized through the kernel.

Most existing compilers are designed to generate sequential object codes to run
on a sequential computer. In other words, conventional computers are being used in a
sequential programming environment using languages, compilers, and operating systems
all developed for a uniprocessor computer.

When using a parallel computer, one desires a parallel environment where par-
allelism is automatically exploited. Language extensions or new constructs must be
developed to specify parallelism or to facilitate easy detection of parallelism at various
granularity levels by more intelligent compilers.

Besides parallel languages and compilers, the operating systems must be also ex-
tended to support parallel activities. The OS must be able to manage the resources

18 Parallel Computer Models

behind parallelism. Important issues include parallel scheduling of concurrent events,
shared memory allocation, and shared peripheral and communication links.

Implicit Parallelism An implicit approach uses a conventional language, such as C,
Fortran, Lisp, or Pascal, to write the source program. The sequentially coded source
program is translated into parallel object code by a parallelizing compiler. As illustrated
in Fig. 1.5a, this compiler must be able to detect parallelismn and assign target machine
resources. This compiler approach has been applied in programming shared-memory
multiprocessors.

With parallelism being implicit, success relies heavily on the “intelligence” of a
parallelizing compiler. This approach requires less effort on the part of the programmer.
David Kuck of the University of Illinois and Ken Kennedy of Rice University and their
associates have adopted this implicit-parallelism approach.

Parallelizing
compiler

preserving compiler

Execution by
runtime system

Execution by
runtime system

(a) Implicit parallelism (b) Explicit parallelism

Figure 1.5 Two approaches to parallel programming. (Courtesy of Charles Seitz;
reprinted with permission from “Concurrent Architectures”, p. 51 and p. 53, VLSJ
and Parallel Compulation, edited by Suaya and Birtwistle, Morgan Kaufmann
Publishers, 1990)

1.2 Multiprocessors and Multicomputers 19

Explicit Parallelism The second approach (Fig. 1.5b) requires more effort by the
programmer to develop a source program using parallel dialects of C, Fortran, Lisp, or
Pascal. Parallelism is explicitly specified in the user programs. This will significantly
reduce the burden on the compiler to detect parallelism. Instead, the compiler needs
to preserve parallelism and, where possible, assigns target machine resources. Charles
Seitz of California Institute of Technology and William Dally of Massachusetts Institute
of Technology adopted this explicit approach in multicomputer development.

Special software tools are needed to make an environment more friendly to user
groups. Some of the tools are parallel extensions of conventional high-level languages.
Others are integrated environments which include tools providing different levels of
program abstraction, validation, testing, debugging, and tuning; performance prediction
and monitoring; and visualization support to aid program development, performance
measurement, and graphics display and animation of computational results.

1.2 Multiprocessors and Multicomputers

Two categories of parallel computers are architecturally modeled below. These
physical models are distinguished by having a shared common memory or unshared
distributed memories. Only architectural organization models are described in Sections
1.2 and 1.3. Theoretical and complexity models for parallel computers are presented in
Section 1.4.

1.2.1 Shared-Memory Multiprocessors

We describe below three shared-memory multiprocessor models: the uniform-
memory-access (UMA) model, the nonuniform-memory-access (NUMA) model, and
the cache-only memory architecture (COMA) model. These models differ in how the
memory and peripheral resources are shared or distributed.

The UMA Model Ina UMA multiprocessor model (Fig. 1.6), the physical memory
is uniformly shared by all the processors. All processors have equal access time to all
memory words, which is why it is called uniform memory access. Each processor may
use a private cache. Peripherals are also shared in some fashion.

Multiprocessors are called tightly coupled systems due to the high degree of resource
sharing. The system interconnect takes the form of a common bus_a crossbar switch,
or a multistage network to be studied in Chapter 7.

Most computer manufacturers have multiprocessor (MP) extensions of their unipro-
cessor (UP) product line. The UMA model is suitable for general-purpose and time-
sharing applications by multiple users. It can be used to speed up the execution of a
single large program in time-critical applications. To coordinate parallel events, synchro-
nization and communication among processors are done through using shared variables
in the common memory.

When all processors have equal access to all peripheral devices, the system is called
a symmetric multiprocessor. In this case, all the processors are equally capable of
running the executive programs, such as the OS kernel and I/O service routines.

20 Parallel Computer Models

Figure 1.6 The UMA multiprocessor model (e.g., the Sequent Symmetry S-81).

In an asymmetric multiprocessor, only one or a subset of processors are executive-
capable. An executive or a master processor can execute the operating system and
handle I/O. The remaining processors have no I/O capability and thus are called at-
tached processors (APs). Attached processors execute user codes under the supervision

of the master processor. In both MP and AP configurations, memory sharing among
master and attached processors is still in place.

Example 1.2 Approximated performance of a multiprocessor

This example exposes the reader to parallel program execution on a shared-
memory multiprocessor system. Consider the following Fortran program written
for sequential execution on a uniprocessor system. All the arrays, A(I), B(I), and
C(I), are assumed to have N elements.

L1: Dol0I=1N

L2: A(I) = B(I) + C(I)
L3: 10 Continue

L4: SUM =0

L5: Do20J=1N

Lé: SUM = SUM + A(J)
L7: 20 Continue

Suppose each line of code L2, L4, and L6 takes 1 machine cycle to execute.
The time required to execute the program control statements L1, L3, L5, and
L7 is ignored to simplify the analysis. Assume that k cycles are needed for each
interprocessor communication operation via the shared memory.

Initially, all arrays are assumed already loaded in the main memory and the
short program fragment already loaded in the instruction cache. In other words,
instruction fetch and data loading overhead is ignored. Also, we ignore bus con-

1.2 Multiprocessors and Multicomputers 21

tention or memory access conflicts problems. In this way, we can concentrate on
the analysis of CPU demand.

The above program can be executed on a sequential machine in 2N cycles
under the above assumptions. N cycles are needed to execute the N independent
iterations in the I loop. Similarly, N cycles are needed for the J loop, which
contains N recursive iterations.

To execute the program on an M-processor system, we partition the looping
operations into M sections with L = N/M elements per section. In the following
parallel code, Doall declares that all M sections be executed by M processors in
parallel:

Doall K=1,M
Do 101 =L(K-1) + 1, KL
A(I) = B(I) + C(I)

10 Continue
SUM(K) =0
Do20J=1L
SUM(K) = SUM(K) + A(L(K-1) + J)
20 Continue
Endall

For M-way parallel execution, the sectioned I loop can be done in L cycles.
The sectioned J loop produces M partial sums in L cycles. Thus 2L cycles are
consumed to produce all M partial sums. Still, we need to merge these M partial
sums to produce the final sum of N elements.

The addition of each pair of partial sums requires k cycles through the shared
memory. An [-level binary adder tree can be constructed to merge all the partial
sums, where | = log, M. The adder tree takes I(k + 1) cycles to merge the M
partial sums sequentially from the leaves to the root of the tree. Therefore, the
multiprocessor requires 2L + I(k + 1) = 2N/M + (k + 1) log, M cycles to produce
the final sum.

Suppose N = 2?0 elements in the array. Sequential execution of the original
program takes 2N = 2°! machine cycles. Assume that each IPC synchronization
overhead has an average value of k = 200 cycles. Parallel execution on M = 256
processors requires 2'% + 1608 = 9800 machine cycles.

Comparing the above timing results, the multiprocessor shows a speedup factor
of 214 out of the maximum value of 256. Therefore, an efficiency of 214/256 =
83.6% has been achieved. We will study the speedup and efficiency issues in Chapter
3.

The above result was obtained under favorable assumptions about overhead. In
reality, the resulting speedup might be lower after considering all software overhead
and potential resource conflicts. Nevertheless, the example shows the promising side
of parallel processing if the interprocessor communication overhead can be reduced
to a sufficiently low level.

22 Parallel Comguter Models

The NUMA Model A NUMA multiprocessor is a shared-memory system in which
the access time varies with the location of the memory word. Two NUMA machine
models are depicted in Fig. 1.7. The shared memory is physically distributed to all
processors, called local memories. The collection of all local memories forms a global
address space accessible by all processors.

It is faster to access a local memory with a local processor. The access of remote
memory attached to other processors takes longer due to the added delay through

the interconnection network. The BBN TC-2000 Butterfly multiprocessor assumes the
configuration shown in Fig. 1.7a.

Legends:
" 3 v 1 P: Processor
: ’ 3 ¢ CSM: Cluster
' : ; v Shared Memory
])
: ; ; ' GSM: Global
' - ' '+ CIN: Cluster In-
; ! eses ' terconnection
e P2 [eomnsctionf | | o o v} Nework
N e ER R oS =
: . LA) : 5 - :
[: : : 3
il A oeaaas e e . N e

(a) Shared local memories (e.g., the (b) A hierarchical cluster model (e.g., the Cedar system at the Uni
BBN Butterfly) versity of Illinois)

Figure 1.7 Two NUMA models for multiprocessor systems.

Besides distributed memories, globally shared memory can be added to a multi-
processor system. In this case, there are three memory-access patterns: The fastest
is local memory access. The next is global memory access. The slowest is access of
remote memory as illustrated in Fig. 1.7b. As a matter of fact, the models shown in
Figs. 1.6 and 1.7 can be easily modified to allow a mixture of shared memory and
private memory with prespecified access rights.

A hierarchically structured multiprocessor is modeled in Fig. 1.7b. The processors
are divided into several clusters. Each cluster is itself an UMA or a NUMA multipro-
cessor. The clusters are connected to global shared-memory modules. The entire svstem
is considered a NUMA multiprocessor. All processors belonging to the same cluster are
allowed to uniformly access the cluster shared-memory modules.

All clusters have equal access to the global memory. However, the access time to
the cluster memory is shorter than that to the global memory. One can specify the
access right among intercluster memories in various ways. The Cedar multiprocessor,

1.2 Multiprocessors and Multicomputers 23

built at the University of Illinois, assumes such a structure in which each cluster is an
Alliant FX/80 multiprocessor.

Table 1.3 Representative Multiprocessor Systems

Company Hardware and Software and Remarks
and Model Architecture Applications
Sequent Bus-connected with DYNIX/OS, 1486-based
Symmetry | 30 i386 processors, KAP /Sequent multiprocessor
S-81 IPC via SLIC bus; Preprocessor, available 199].
Weitek floating-point | transaction 1586-based systems
accelerator. multiprocessing. to appear.
IBM ES/9000 | Model 900/VF has 6 | OS support: MVS, Fiber optic channels,
Model ES /9000 processors VM KMS, AIX/370, | integrated
900/VF with vector facilities, | parallel Fortran, cryptographic
crossbar connected VSF V2.5 compiler. architecture.

to 1/O channels and
shared memory.

BBN TC-2000 | 512 M88100 Ported Mach/OS Shooting for_higher
processors with local | with multiclustering, | performance using
memory connected use parallel Fortran, faster processors in
by a Butterfly time-critical future models.
switch, a NUMA applications.
machine.

The COMA Model A multiprocessor using cache-only memory assumes the COMA
model. Examples of COMA machines include the Swedish Institute of Computer Sci-
ence’s Data Diffusion Machine (DDM, Hagersten et al., 1990) and Kendall Square Re-
gsearch’'s KSR-1 machine (Burkhardt et al., 1992). The COMA model is depicted in
Fig. 1.8. Details of KSR-1 are given in Chapter 9.

The COMA model is a special case of a NUMA machine, in which the distributed
main memories are converted to caches. There is no memory hierarchy at each processor
node. All the caches form a global address space. Remote cache access is assisted by
the distributed cache directories (D in Fig. 1.8). Depending on the interconnection
network used, sometimés hierarchical directories may be used to help locate copies of
cache blocks. Initial data placement is not critical because data will eventually migrate
to where it will be used.

Besides the UMA, NUMA, and COMA models specified above, other variations
exist for multiprocessors. For example, a cache-coherent non-uniform memory access
(CC-NUMA) model can be specified with distributed shared memory and cache direc-
tories. Examples of the CC-NUMA model include the Stanford Dash (Lenoski et al.,
1990) and the MIT Alewife (Agarwal et al., 1990) to be studied in Chapter 9. One can
also insist on a cache-coherent COMA machine in which all cache copies must be kept
consistent.

24 Parallel Computer Models

Figure 1.8 The COMA model of a multiprocessor. (P: Processor, C: Cache, D: Direc-
tory; e.g., the KSR-1)

Representative Multiprocessors Several commercially available- multiprocessors
are summarized in Table 1.3. They represent four classes of multiprocessors. The
Sequent Symmetry S81 belongs to a class called minisupercomputers. The IBM Sys-
tem/390 models are high-end mainframes, sometimes called near-supercomputers. The
BBN TC-2000 represents the MPP class.

The S-81 is a transaction processing multiprocessor consisting of 30 i386/i486 mi-
croprocessors tied to a common backplane bus. The IBM ES/9000 models are the latest
IBM mainframes having up to 6 processors with attached vector facilities. The TC-2000
can be configured to have 512 M88100 processors interconnected by a multistage But-
terfly network. This is designed as a NUMA machine for real-time or time-critical
applications.

Multiprocessor systems are suitable for general-purpose multiuser applications where
programmability is the major concern. A major shortcoming of multiprocessors is the
lack of scalability. It is rather difficult to build MPP machines using centralized shared-
memory model. Latency tolerance for remote memory access is also a major limitation.

Packaging and cooling impose additional constraints on scalability. We will study
scalability and programmability in subsequent chapters. In building MPP systems,
distributed-memory multicomputers are more scalable but less programmable due to
added communication protocols.

1.2.2 Distributed-Memory Multicomputers

A distributed-memory multicomputer system is modeled in Fig. 1.9. The system
consists of multiple computers, often called nodes, interconnected by a message-passing
network. Each node is an autonomous computer consisting of a processor, local memory,
and sometimes attached disks or I/O peripherals.

The message-passing network provides point-to-point static connections among the
nodes. All local memories are private and are accessible only by local processors.
For this reason, traditional multicomputers have been called no-remote-memory-access
(NORMA) machines. However, this restriction will gradually be removed in future mul-

1.2 Multiprocessors and Multicomputers 25

ticomputers with distributed shared memories. Internode communication is carried out
by passing messages through the static connection network.

s

(Mesh, ring, torus,
hypercube, cube-

T '”’E'

Figure 1.9 Generic model of a message-passing multicomputer.

Multicomputer Generations Modern multicomputers use hardware routers to pass
messages. A computer node is attached to each router. The boundary router may be
connected to I/O and peripheral devices. Message passing between any two nodes
involves a sequence of routers and channels. Mixed types of nodes are allowed in a
heterogeneous multicomputer. The internode communications in a heterogeneous mul-
ticomputer are achieved through compatible data representations and message-passing
protocols.

Message-passing multicomputers have gone through two generations of develop-
ment, and a new generation is emerging.

The first generation (1983-1987) was based on processor board technology using
hypercube architecture and software-controlled message switching. The Caltech Cosmic
and Intel iPSC/1 represented the first-generation development.

The second generation (1988-1992) was implemented with mesh-connected archi-
tecture, hardware message routing, and a software environment for medium-grain dis-
tributed computing, as represented by the Intel Paragon and the Parsys SuperNode
1000.

The emerging third generation (1993-1997) is expected to be fine-grain multicom-
puters, like the MIT J-Machine and Caltech Mosaic, implemented with both processor
and communication gears on the same VLSI chip.

In Section 2.4, we will study various static network topologies used to construct

26 Parallel Computer Models

multicomputers. Famous topologies include the ring, tree, mesh, torus, hypercube, cube-
connected cycle, etc. Various communication patterns are demanded among the nodes,
such as one-to-one, broadcasting, permutations, and multicast patterns.

Important issues for multicomputers include message-routing schemes, network flow
control strategies, deadlock avoidance, virtual channels, message-passing primitives, and
program decomposition techniques. In Part IV, we will study the programming issues
of three generations of multicomputers.

Representative Multicomputers Three message-passing multicomputers are sum-
marized in Table 1.4. With distributed processor/memory nodes, these machines are
better in achieving a scalable performance. However, message passing imposes a hard-
ship on programmers to distribute the computations and data sets over the nodes or to
establish efficient communication among nodes. Until intelligent compilers and efficient
distributed OSs become available, multicomputers will continue to lack programmabil-

ity.

Table 1.4 Representative Multicomputer Systems

16-128 Mbytes per
node, special 1/O

with FPU, 14 DMA
ports, with 1-64

System Intel nCUBE/2 Parsys Ltd.

Features Paragon XP/S 6480 SuperNodel000
Node Types 50 MHz 1860 XP Each node contains a | EC-funded Esprit
and Memory computing nodes with | CISC 64-bit CPU, supernode built with

multiple T-800
Transputers per node.

Ethernet, and custom
1/0.

nodes, 512-Gbyte
memory, 64 [/O
boards.

service nodes. Mbytes/node.
Network and 2-D mesh with SCSI, 1 3-dimensional Reconfigurable
1/0 HIPPI, VME, hypercube of 8192 interconnect,

expandable to have
1024 processors.

GIPS peak integer
performance.,

challenge to build
even larger machine.

OS and OSF conformance Vertex/OS or UNIX IDRIS/OS is
Software task | with 4.3 BSD, supporting message UNIX-compatible,
parallelism visualization and passing using supported.
Support programming wormhole routing.
support.
Application General sparse matrix | Scientific number Scientific and
Drivers methods, parallel crunching with scalar | academic
data manipulation, nodes, database applications.
strategic computing. processing.
Performance 5~300 Gflops peak 27 Gflops peak, 36 200 MIPS to 13 GIPS
Remarks 64-bit results, 2.8-160 | Gbytes/s 1/0, peak, largest

supernode in use
contains 256
Transputers.

The Paragon system assumes a mesh architecture, and the nCUBE/2 has a hy-

1.3 Multivector and SIMD Computers 27

percube architecture. The Intel i860s and some custom-designed VLSI processors are
used as building blocks in these machines. All three OSs are UNIX-compatible with
extended functions to support message passing.

Most multicomputers are being upgraded to yield a higher degree of parallelism
with enhanced processors. We will study various massively parallel systems in Part III
where the tradeoffs between scalability and programmability are analyzed.

1.2.3 A Taxonomy of MIMD Computers

Parallel computers appear as either SIMD or MIMD configurations. The SIMDs
appeal more to special-purpose applications. It is clear that SIMDs are not size-scalable,
but unclear whether large SIMDs are generation-scalable. The fact that CM-5 has an
MIMD architecture, away from the SIMD architecture in CM-2, may shed some light
on the architectural trend. Furthermore, the boundary between multiprocessors and
multicomputers has become blurred in recent years, Eventually, the distinctions may
vanish.

The architectural trend for future general-purpose computers is in favor of MIMD
configurations with distributed memories having a globally shared virtual address space.
For this reason, Gordon Bell (1992) has provided a taxonomy of MIMD machines,
reprinted in Fig. 1.10. He considers shared-memory multiprocessors as having a single
address space. Scalable multiprocessors or multicomputers must use distributed shared
memory. Unscalable multiprocessors use centrally shared memory.

Multicomputers use distributed memories with multiple address spaces. They are
scalable with distributed memory. Centralized multicomputers are yet to appear. Many
of the identified example systems will be treated in subsequent chapters. The evolu-
tion of fast LAN (local area network)-connected workstations will create “commodity
supercomputing”. Bell advocates high-speed workstation clusters interconnected by
high-speed switches in lien of special-purpose multicomputers. The CM-5 development
has already moved in this direction.

The scalability of MIMD computers will be further studied in Section 3.4 and
Chapter 9. In Part III, we will study distributed-memory multiprocessors (KSR-1,
SCI, etc.); central-memory multiprocessors (Cray, IBM, DEC, Fujitsu, Encore, etc.);
multicomputers by Intel, TMC, and nCUBE; fast LAN-based workstation clusters; and
other exploratory research systems.

1.3 Multivector and SIMD Computers

In this section, we introduce supercomputers and parallel processors for vector
processing and data parallelism. We classify supercomputers either as pipelined vector
machines using a few powerful processors equipped with vector hardware, or as SIMD
computers emphasizing massive data parallelism.

1.3.1 Vector Supercomputers

A vector computer is often built on top of a scalar processor. As shown in Fig. 1.11,
the vector processor is attached to the scalar processor as an optional feature. Program

28

Multiple Address Space

(scalable)

multiprocessors
{not scalable)

Parallel Computer Models

binding of
%&»M

Static binding, ring mufti
IEEE SCI standard proposal

Allant, DASH

Static am binding
BBN, , CM*

e B
NEC, Tera

Simple, ring multi, bus
multi replacement

Bus multis
DEC, Encore, NCR,...
Sequent, SGI, Sun

Mesh connected
Intel

Butterfly/Fat Tree
CM5

NCUBE

Fast LANSs for high
availability and high

DEC, Tandem

LANSs for distributed

?mmmm

Central multicomputers

Figure 1.10 Bell's taxonomy of MIMD computers. (Courtesy of Gordon Bell; reprinted
with permission from the Communications of ACM, August 1992)

and data are first loaded into the main memory through a host computer. All instruc-
tions are first decoded by the scalar control unit. If the decoded instruction is a scalar
operation or a program control operation, it will be directly executed by the scalar
processor using the scalar functional pipelines.

If the instruction is decoded as a vector operation, it will be sent to the vector
control unit. This control unit will supervise the flow of vector data between the main
memory and vector functional pipelines. The vector data flow is coordinated by the con-
trol unit. A number of vector functional pipelines may be built into a vector processor.
Two pipeline vector supercomputer models are described below.

1.3 Multivector and SIMD Computers 29

§ ‘ Vector Processor
5 Scalar | E Nector Vector
: L:ormol Unit| " Tnstiuctions ™ oo o
' - v Control
Y
—_

Vector Func. Pipe.

ﬁ
e
.
Vector Func. Pipe.
-t

...

R Lk Rk kL T O S ——

VO (User)

Figure 1.11 The architecture of a vector supercomputer.

Vector Processor Models Figure 1.11 shows a register-to-register architecture.
Vector registers are used to hold the vector operands, intermediate and final vector
results. The vector functional pipelines retrieve operands from and put results into the
vector registers. All vector registers are programmable in user instructions. Each vector
register is equipped with a component counter which keeps track of the component
registers used in successive pipeline cycles.

The length of each vector register is usually fixed, say, sixty-four 64-bit component
registers in a vector register in a Cray Series supercomputer. Other machines, like the
Fujitsu VP2000 Series, use reconfigurable vector registers to dynamically match the
register length with that of the vector operands.

In general, there are fixed numbers of vector registers and functional pipelines in
a vector processor. Therefore, both resources must be reserved in advance to aveid
resource conflicts between different vector operations. Several vector-register based
supercomputers are summarized in Table 1.5.

A memory-to-memory architecture differs from a register-to-register architecture
in the use of a vector stream unit to replace the vector registers. Vector operands and
results are directly retrieved from the main memory in superwords, say, 512 bits as in
the Cyber 205.

Pipelined vector supercomputers started with uniprocessor models such as the Cray
1 in 1976. Recent supercomputer systems offer both uniprocessor and multiprocessor
models such as the Cray Y-MP Series. Most high-end mainframes offer multiprocessor

30 Parallel Computer Models

models with add-on vector hardware, such as the VAX 9000 and IBM 390/VF models.

Representative Supercomputers Over a dozen pipelined vector computers have
been manufactured, ranging from workstations to mini- and supercomputers. Notable
ones include the Stardent 3000 multiprocessor equipped with vector pipelines, the Con-
vex C3 Series, the DEC VAX 9000, the IBM 390/VF, the Cray Research Y-MP family,
the NEC SX Series, the Fujitsu VP2000, and the Hitachi S-810/20.

Table 1.5 Representative Vector Supercomputers

System Vector Hardware Architecture Compiler and
Model and Capabilities Software Support
Convex GaAs-based m iltiprocessor Advanced C, Fortran,
C3800 with 8 processors and and Ada vectorizing
family 500-Mbyte/s access port. and parallelizing compilers.
4 Gbytes main memory. Also support inter-
2 Gflops peak procedural optimization,
performance with POSIX 1003.1/0S
concurrent scalar/vector plus I/O interfaces
operations. and visualization system
Digital Integrated vector processing MS or ULTRIX/OS,
VAX 9000 in the VAX environment, VAX Fortran and
System 125-500 Mflops VAX Vector Instruction
peak performance. Emulator (VVIEF)
63 vector instructions. for vectorized
16 x 64 x 64 vector registers. program debugging.
. | Pipeline chaining possible.
Cray Research { Y-MP runs with 2, 4, or CF77 compiler for
Y-MP and 8 processors, 2.67 Gflop automatic vectorization,
C-90 peak with Y-MP8256. C-90 scalar optimization,
has 2 vector pipes/CPU and parallel processing.
built with 10K gate ECL UNICOS improved
with 16 Gflops peak performance. from UNIX/V and
Berkeley BSD/OS.

The Convex C1 and C2 Series were made with ECL/CMOS technologies. The
latest C3 Series is based on GaAs technology.

The DEC VAX 9000 is Digital's largest mainframe system providing concurrent
scalar /vector and multiprocessing capabilities. The VAX 9000 processors use a hybrid
architecture. The vector unit is an optional feature attached to the VAX 9000 CPU.
The Cray Y-MP family offers both vector and multiprocessing capabilities.

1.3.2 SIMD Supercomputers

In Fig. 1.3b, we have shown an abstract model of SIMD computers having a
single instruction stream over multiple data streams. An operational model of SIMD

1.3 Multivector and SIMD Computers 31

computers is presented below (Fig. 1.12) based on the work of H. J. Siegel (1979).
Implementation models and case studies of SIMD machines are given in Chapter 8.

SIMD Machine Model An operational model of an SIMD computer is specified by
a 5-tuple:

M = (N,C,I,M,R) (1.5)

where

(1) N is the number of processing elements (PEs) in the machine. For example, the
Illiac IV has 64 PEs and the Connection Machine CM-2 uses 65,536 PEs.

(2) C is the set of instructions directly executed by the control unit (CU), including
scalar and program flow control instructions.

(3) I is the set of instructions broadcast by the CU to all PEs for parallel execution.
These include arithmetic, logic, data routing, masking, and other local operations
executed by each active PE over data within that PE.

(4) M is the set of masking schemes, where each mask partitions the set of PEs into
enabled and disabled subsets.

(5) Ris the set of data-routing functions, specifying various patterns to be set up in
the interconnection network for inter-PE communications.

Control Unit

PEOI PE 1 PE2 PE

N4
{
Proc. 0 Proc. 1 Proc. 2 Proc. N-1
ees
‘ | Mom. N-1
- —

Mem. O Mem. 1 Mem. 2

i T

Figure 1.12 Operational model of SIMD computers.

One can describe a particular SIMD machine architecture by specifying the 5-tuple.
An example SIMD machine is partially specified below:

Example 1.3 Operational specification of the MasPar MP-1 computer

We will study the detailed architecture of the MasPar MP-1 in Chapter 7. Listed
below is a partial specification of the 5-tuple for this machine:

32 Parallel Computer Models

(1) The MP-1 is an SIMD machine with N = 1024 to 16,384 PEs, depending
on which configuration is considered.

(2) The CU executes scalar instructions, broadcasts decoded vector instructions
to the PE array, and controls the inter-PE communications.

(3) Each PE is a register-based load/store RISC processor capable of execut-
ing integer operations over various data sizes and standard floating-point
operations. The PEs receive instructions from the CU.

(4) The masking scheme is built within each PE and continuously monitored by
the CU which can set and reset the status of each PE dynamically at run
time,

(5) The MP-1 has an X-Net mesh network plus a global multistage crossbar
router for inter-CU-PE, X-Net nearest 8 neighbor, and global router com-
munications.

Representative SIMD Computers Three SIMD supercomputers are summarized
in Table 1.6. The number of PEs in these systems ranges from 4096 in the DAP610 to
16,384 in the MasPar MP-1 and 65,536 in the CM-2. Both the CM-2 and DAP610 are
fine-grain, bit-slice SIMD computers with attached floating-point accelerators for blocks
of PEs.

Each PE of the MP-1 is equipped with a 1-bit logic unit, 4-bit integer ALU, 64-
bit mantissa unit, and 16-bit exponent unit. Therefore, the MP-1 is a medium-grain
SIMD machine. Multiple PEs can be built on a single chip due to the simplicity of each
PE. The MP-1 implements 32 PEs per chip with forty 32-bit registers per PE. The 32
PEs are interconnected by an X-Net mesh, which is a 4-neighbor mesh augmented with
diagonal dual-stage links.

The CM-2 implements 16 PEs as a mesh on a single chip. Each 16-PE mesh chip
is placed at one vertex of a 12-dimensional hypercube. Thus 16 x 2'? = 2!° = 65,536
PEs form the entire SIMD array.

The DAP610 implements 64 PEs as a mesh on a chip. Globally, a large mesh
(64 x 64) is formed by interconnecting these small meshes on chips. Fortran 90 and
modified versions of C, Lisp, and other synchronous programming languages have been
developed to program SIMD machines.

1.4 PRAM and VLSI Models

Theoretical models of parallel computers are abstracted from the physical models
studied in previous sections. These models are often used by algorithm designers and
VLSI device/chip developers. The ideal models provide a convenient framework for de-
veloping parallel algorithms without worry about the implementation details or physical
constraints.

The models can be applied to obtain theoretical performance bounds on parallel
computers or to estimate VLSI complexity on chip area and execution time before the

1.4 PRAM and VLSI Models

Table 1.6 Representative SIMD Supercomputers

33

System SIMD Machine Architecture Languages, Compilers
Model and Capabilities and Software Support

MasPar Available in configurations from Fortran 77, MasPar Fortran

Computer 1024 to 16,384 processors with (MPF), and MasPar Parallel

Corporation 26,000 MIPS or 1.3 Gflops. Each Application Language;

MP-1 Family | PE is a RISC processor, with 16 UNIX/O0S with X-window,
Kbytes local memory. An X-Net symbolic debugger, visualizers
mesh plus a multistage crossbar and animators.
interconnect.

Thinking A bit-slice array of up to 65,536 Driven by a host of VAX,

Machines PEs arranged as a 10-dimensional Sun, or Symbolics 3600, Lisp

Corporation, hypercube with 4 X 4 mesh on each | compiler, Fortran 90, C*, and

CM-2 vertex, up to 1M bits of memory *Lisp supported by PARIS
per PE, with optional FPU shared
between blocks of 32 PEs. 28
Gflops peak and 5.6 Gflops
sustained.

Active A fine-grain, bit-slice SIMD array Provided by host VAX/VMS

Memory of up to 4096 PEs interconnected or UNIX Fortran-plus or

Technology by a square mesh with 1K bits per | APAL on DAP, Fortran 77 or

DAP600 PE, orthogonal and 4-neighbor C on host. Fortran-plus

Family links, 20 GIPS and 560 Mflops affected Fortran 90 standards.
peak performance.

chip is fabricated. The abstract models are also useful in scalability and programma-
bility analysis, when real machines are compared with an idealized parallel machine
without worrying about communication overhead among processing nodes.

1.4.1 Parallel Random-Access Machines

Theoretical models of parallel computers are presented below. We define first the
time and space complexities. Computational tractability is reviewed for solving difficult
problems on computers. Then we introduce the random-access machine (RAM), parallel
random-access machine (PRAM), and variants of PRAMs. These complexity models
facilitate the study of asymptotic behavior of algorithms implementable on parallel
computers.

Time and Space Complexities The complexity of an algorithm for solving a prob-
lem of size s on a computer is determined by the execution time and the storage space
required. The time complezity is a function of the problem size. The time complexity
function in order notation is the asymptotic time complezity of the algorithm. Usually,
the worst-case time complexity is considered. For example, a time complexity g(as) is
said to be O(f(s)), read “order f(s)”, if there exist positive constants ¢ and sy such
that g(s) < ¢f(s) for all nonnegative values of s > 3.

34 Parallel Computer Models

The space complezity can be similarly defined as a function of the problem size
s. The asymptotic space complezity refers to the data storage of large problems. Note
that the program (code) storage requirement and the storage for input data are not
considered in this.

The time complexity of a serial algorithm is simply called serial complezity. The
time complexity of a parallel algorithm is called parallel complezity. Intuitively, the
parallel complexity should be lower than the serial complexity, at least asymptotically.
We consider only deterministic algorithms, in which every operational step is uniquely
defined in agreement with the way programs are executed on real computers.

A nondeterministic algorithm contains operations resulting in one outcome in a
set of possible outcomes. There exist no real computers that can execute nondetermin-
istic algorithms. Therefore, all algorithms (or machines) considered in this book are
deterministic, unless otherwise noted.

NP-Completeness An algorithm has a polynomial complezxity if there exists a poly-
nomial p(s) such that the time complexity is O(p(s)) for any problem size s. The set
of problems having polynomial-complexity algorithms is called P-class (for polynomial
class). The set of problems solvable by nondeterministic algorithms in polynomial time
is called NP-class (for nondeterministic polynomial class).

Since deterministic algorithms are special cases of the nondeterministic ones, we
know that P C NP. The P-class problems are computationally tractable, while the
NP — P-class problems are intractable. But we do not know whether P = NP or P #
NP. This is still an open problem in computer science.

To simulate a nondeterministic algorithm with a deterministic algorithm may re-
quire exponential time. Therefore, intractable NP-class problems are also said to have
exponential-time complexity.

Example 1.4 Polynomial- and exponential-complexity algorithms

Polynomial-complexity algorithms are known for sorting n numbers in O(n log n)
time and for multiplication of two n x n matrices in O(n®) time. Therefore, both
problems belong to the P-class.

Nonpolynomial algorithms have been developed for the traveling salesperson
problem with complexity O(n?2") and for the knapsack problem with complexity
O(2"/?). These complexities are ezponential, greater than the polynomial complex-
ities. So far, deterministic polynomial algorithms have not been found for these
problems. Therefore, exponential-complexity problems belong to the NP-class.

|

Most computer scientists believe that P # NP. This leads to the conjecture that
there exists a subclass, called NP-complete (NPC) problems, such that NPC C NP but
NPC NP = @ (Fig. 1.13). In fact, it has been proved that if any NP-complete problem is
polynomial-time solvable, then one can conclude P = NP. Thus NP-complete problems
are considered the hardest ones to solve. Only approximation algorithms were derived
for solving some of the NP-complete problems.

1.4 PRAM and VLSI Models 35

NP: Nondeterministic polynomial-

NP time class
@ P: Polynomial-time class.

NPC: NP-complete class

Figure 1.13 The relationships conjectured among the NP, P, and NPC classes of
computational problems.

PRAM Models Conventional uniprocessor computers have been modeled as random-
access machines (RAM) by Sheperdson and Sturgis (1963). A parallel random-access
machine (PRAM) model has been developed by Fortune and Wyllie (1978) for model-
ing idealized parallel computers with zero synchronization or memory access overhead.
This PRAM model will be used for parallel algorithm development and for scalability

and complexity analysis.

:
;
i

Figure 1.14 PRAM model of a multiprocessor system with shared memory, on
which all n processors operate in lockstep in memory access and pro-
gram execution operations. Each processor can access any memory
location in unit time.

An n-processor PRAM (Fig. 1.14) has a globally addressable memory. The shared
memory can be distributed among the processors or centralized in one place. The n
processors [also called processing elements (PEs) by other authors| operate on a syn-
chronized read-memory, compute, and write-memory cycle. With shared memory, the
model must specify how concurrent read and concurrent write of memory are handled.
Four memory-update options are possible:

e Ezclusive read (ER) — This allows at most one processor to read from any
memory location in each cycle, a rather restrictive policy.

36 Parallel Computer Models

e Ezclusive write (EW) — This allows at most one processor to write into a memory
location at a time.

e Concurrent read (CR) — This allows multiple processors to read the same infor-
mation from the same memory cell in the same cycle.

e Concurrent write (CW) — This allows simultaneous writes to the same memory

location. In order to avoid confusion, some policy must be set up to resolve the
write conflicts.

Various combinations of the above options lead to several variants of the PRAM
model as specified below. Since CR does not create a conflict problem, variants differ
mainly in how they handle the CW conflicts.

PRAM Variants Described below are four variants of the PRAM model, depending
on how the memory reads and writes are handled.

(1) The EREW-PRAM model — This model forbids more than one processor from
reading or writing the same memory cell simultaneously (Snir, 1982; Karp and
Ramachandran, 1988). This is the most restrictive PRAM model proposed.

(2) The CREW-PRAM model — The write conflicts are avoided by mutual exclusion.
Concurrent reads to the same memory location are allowed.

(3) The ERCW-PRAM model — This allows exclusive read or concurrent writes to
the same memory location.

(4) The CRCW-PRAM model — This model allows either concurrent reads or con-
current writes at the same time. The conflicting writes are resolved by one of
the following four policies (Fortune and Wyllie, 1978):

e Common — All simultaneous writes store the same value to the hot-spot
memory location.

e Arbitrary — Any one of the values written may remain; the others are
ignored.

e Minimum — The value written by the processor with the minimum index
will remain.

e Priority — The values being written are combined using some associative
functions, such as summation or maximum.

Example 1.5 Multiplication of two n x n matrices in O(logn) time on a
PRAM with n®/logn processors (Viktor Prasanna, 1992)

Let A and B be the input matrices. Assume n® PEs are available initially. We
later reduce the number of PEs to n®/logn. To visualize the algorithm, assume
the memory is organized as a three-dimensional array with inputs A and B stored
in two planes. Also, for sake of explanation, assume a three-dimensional indexing
of the PEs. PE(i,j, k), 0 < k € n — 1 are used for computing the (i,j)th entry of
the output matrix, 0 <i,j <n -~ 1, and n is a power of 2.

In step 1, n product terms corresponding to each output are computed using n
PEs in O(1) time. In step 2, these are added to produce an output in O(log n) time.

1.4 PRAM and VLSI Models 37

The total number of PEs used is n®. The result is available in C(i,j,0),0 < i,j <
n~1. Listed below are programs for each PE(i, j, k) to execute. All n® PEs operate

in parallel for n® multiplications. But at most n®/2 PEs are busy for (n® — n?)
additions. Also, the PRAM is assumed to be CREW.

Step 1:
1. Read A(i, k)
2. Read B(k,))

3. Compute A(i, k) x B(k,j)
4. Store in C(i,)i k)

Step 2:
1. €e—n
2. Repeat
£—£/2
if (k < £) then
begin
Read C(i, j, k)
Read C(i,j,k + ¢)
Compute C(i,), k) + C(i,j.k + ¢
Store in C(i, j, k)
end
until (£ =1)

To reduce the number of PEs to n®/logn, use a PE array of size n xn xn/logn.
Each PE is responsible for computing log n product terms and summing them up.
Step 1 can be easily modified to produce n/logn partial sums, each consisting of
log n multiplications and (logn — 1) additions. Now we have an array C(i,], k),
0<i,j€n-1,0<k < n/logn — 1, which can be summed up in log(n/logn)
time. Combining the time spent in step 1 and step 2, we have a total execution
time 2logn ~ 1 + log(n/logn) = O(logn) for large n.

|

Discrepancy with Physical Models PRAM models idealized parallel computers,
in which all memory references and program executions by multiple processors are
synchronized without extra cost. In reality, such parallel machines do not exist. An
SIMD machine with shared memory is the closest architecture modeled by PRAM.
However, PRAM allows different instructions to be executed on different processors
simultaneously. Therefore, PRAM really operates in synchronized MIMD mode with a
shared memory.

Among the four PRAM variants, the EREW and CRCW are the most popular
models used. In fact, every CRCW algorithm can be simulated by an EREW algorithm.
The CRCW algorithm runs faster than an equivalent EREW algorithm. It has been
proved that the best n-processor EREW algorithm can be no more than O(logn) times
slower than any n-processor CRCW algorithm.

38 Parallel Computer Models

The CREW model has received more attention in the literature than the ERCW
model. The CREW models MISD machines, which have attracted little attention.
For our purposes, we will use the CRCW-PRAM model unless otherwise stated. This
particular model will be used in defining scalability in Chapter 3.

For complexity analysis or performance comparison, various PRAM variants offer
an ideal model of parallel computers. Therefore, computer scientists use the PRAM
model more often than computer engineers. In this book, we design parallel/vector
computers using physical architectural models rather than PRAM models.

The PRAM model will be used for scalability and performance studies in Chapter
3 as a theoretical reference machine. For regularly structured parallelism, the PRAM
can model much better than practical machine models. Therefore, sometimes PRAMs
can indicate an upper bound on the performance of real parallel computers.

1.4.2 VLSI Complexity Model

Parallel computers rely on the use of VLSI chips to fabricate the major compo-
nents such as processor arrays, memory arrays, and large-scale switching networks. An
AT? model for two-dimensional VLSI chips is presented below, based on the work of
Clark Thompson (1980). Three lower bounds on VLSI circuits are interpreted by Jef-
frey Ullman (1984). The bounds are obtained by setting limits on memory, I1/0O, and
communication for implementing parallel algorithms with VLSI chips.

The AT? Model Let A be the chip area and 7" be the latency for completing a
given computation using a VLSI circuit chip. Let s by the problem size involved in the
computation. Thompson stated in his doctoral thesis that for certain computations,
there exists a lower bound f(s) such that

AxT? > 0(f(s)) (1.6)

The chip area A is a measure of the chip’s complexity. The latency T is the time
required from when inputs are applied until all outputs are produced for a single problem
instance. Figure 1.15 shows how to interpret the AT? complexity results in VLSI chip
development. The chip is represented by the base area in the two horizontal dimensions.
The vertical dimension corresponds to time. Therefore, the three-dimensional solid
represents the history of the computation performed by the chip.

Memory Bound on Chip Area A There are many computations which are memory-
bound, due to the need to process large data sets. To implement this type of compu-
tation in silicon, one is limited by how densely information (bit cells) can be placed on
the chip. As depicted in Fig. 1.15a, the memory requirement of a computation sets a
lower bound on the chip area A.

The amount of information processed by the chip can be visualized as information
flow upward across the chip area. Each bit can flow through a unit area of the horizontal
chip slice. Thus, the chip area bounds the amount of memory bits stored on the chip.

I/O Bound on Volume AT The volume of the rectangular cube is represented by

1.4 PRAM and VLSI Models 39

1 Time
T |
T e
_l. Chip area
(a) Memory-limited bound on chip area (b) Communication-limited bound on the
A and 1/O-limited bound on chip history bisection VAT

represented by the volume AT

Figure 1.15 The AT? complexity model of two-dimensional VLSI chips.

the product AT. As information flows through the chip for a period of time T, the
number of input bits cannot exceed the volume. This provides an I/O-limited lower
bound on the product AT, as demonstrated in Fig. 1.15a.

The area A corresponds to data into and out of the entire surface of the silicon
chip. This areal measure sets the maximum I/O limit rather than using the peripheral
I/O pads as seen in conventional chips. The height T of the volume can be visualized as
a number of snapshots on the chip, as computing time elapses. The volume represents
the amount of information flowing through the chip during the entire course of the
computation.

Bisection Communication Bound, VAT Figure 1.15b depicts a communication
limited lower bound on the bisection area v/AT. The bisection is represented by the
vertical slice cutting across the shorter dimension of the chip area. The distance of this
dimension is at most v/A for a square chip. The height of the cross section is T .

The bisection area represents the maximum amount of information exchange be-
tween the two halves of the chip circuit during the time period 7. The cross-section
area VAT limits the communication bandwidth of a computation. VLSI complexity
theoreticians have used the square of this measure, AT?, as the lower bound.

Charles Seitz (1990) has given another interpretation of the AT result. He consid-
ers the area-time product AT the cost of a computation, which can be expected to vary
as 1/7. This implies that the cost of computation for a two-dimensional chip decreases
with the execution time allowed.

When three-dimensional (multilayer) silicon chips are used, Seitz asserted that the

40 Parallel Computer Models

cost of computation, as limited by volume-time product, would vary as 1/v/7T. This is
due to the fact that the bisection will vary as (AT)?/? for 3-D chips instead of as VAT
for 2-D chips.

Example 1.6 VLSI chip implementation of a matrix multiplication al-
gorithm (Viktor Prasanna, 1992)

This example shows how to estimate the chip area A and compute time 7" for
n X n matrix multiplication C = A x B on a mesh of processing elements (PEs)
with a broadcast bus on each row and each column. The 2-D mesh architecture
is shown in Fig. 1.16. Inter-PE communicaiton is done through the broadcast
buses. We want to prove the bound AT? = O(n*') by developing a parallel matrix
multiplication algorithm with time T' = O(n) in using the mesh with broadcast
buses. Therefore, we need to prove that the chip area is bounded by A = O(n?).

By By By B
e BH B &
B BH B B
g e B @

Figure 1.16 A 4 x 4 mesh of processing elements (PEs) with broadcast buses on
each row and on each column. (Courtesy of Prasanna Kumar and Raghaven-
dra; reprinted from Journal of Parallel and Distributed Computing, April 1987)

Each PE occupies a unit area, and the broadcast buses require O(n?) wire area.
Thus the total chip area needed is O(n?) for an n x n mesh with broadcast buses.
We show next that the n x n matrix multiplication can be performed on this mesh
chip in T = O(n) time. Denote the PEs as PE(ij), 0 <1, < n - 1.

Initially the input matrix elements A(i,j) and B(i,j) are stored in PE(i,j) with
no duplicated data. The memory is distributed among all the PEs. Each PE
can access only its own local memory. The following parallel algorithm shows

how to perform the dot-product operations in generating all the output elements
C(,j) = Sor—s A(i,k) x B(k,j) for 0 <i,j<n—1.

Doall 10for0<i,j<n-1
10 PE(ij) sets C(i,j) to 0 /Initialization/

1.5 Architectural Development Tracks 41

Dos0for0<k<n-1
Doall 20for0<i<n-1

20 PE(i,k) broadcasts A(i,k) along its row bus
Doall30 for0<j<n-1
30 PE(k,j) broadcasts B(k,j) along its column bus

/PE(ij) now has A(i,k) and B(k,j),0<i,j<n-1/
Doall 40 for0<i,j<n-1
40 PE(i,j) computes C(i,j) « C(i,j) + A(i, k) x B(k,j)
50 Continue

The above algorithm has a sequential loop along the dimension indexed by k. It
takes n time units (iterations) in this k-loop. Thus, we have 7" = O(n). Therefore,
AT? = O(n?) - (O(n))? = O(n*).

-]

1.5 Architectural Development Tracks

The architectures of most existing computers follow certain development tracks.
Understanding features of various tracks provides insights for new architectural de-
velopment. We look into six tracks to be studied in later chapters. These tracks are
distinguished by similarity in computational models and technological bases. We review
below a few representative systems in each track.

1.5.1 Multiple-Processor Tracks

Generally speaking, a multiple-processor system can be either a shared-memory
multiprocessor or a distributed-memory multicomputer as modeled in Section 1.2. Bell
listed these machines at the leaf nodes of the taxonomy tree (Fig. 1.10). Instead of a
horizontal listing, we show a historical development along each important track of the
taxonomy.

Shared-Memory Track Figure. 1.17a shows a track of multiprocessor development
employing a single address space in the entire system. The track started with the C.mmp
system developed at Carnegie-Mellon University (Wulf and Bell, 1972). The C.mmp
was an UMA multiprocessor. Sixteen PDP 11/40 processors are interconnected to 16
shared-memory modules via a crossbar switch. A special interprocessor interrupt bus is
provided for fast interprocess communication, besides the shared memory. The C.mmp
project pioneered shared-memory mmltiprocessor development, not only in the crossbar
architecture but also in the multiprocessor operating system (Hydra) development.

Both the NYU Ultracomputer project (Gottlieb et al., 1983) and the [llinois Cedar
project (Kuck et al., 1987) were developed with a single address space. Both systems
used multistage networks as a system interconnect. The major achievements in the
Cedar project are in parallel compilers and performance benchmarking experiments.
The Ultracomputer developed the combining network for fast synchronization among
multiple processors to be studied in Chapter 7. '

42 Parallel Computer Models

Stanford/Dash
(Lenoski, Hennessy et al, 1992)

Illinois Cedar s e, 1990
Kuck, et al
1987)
KSR1
CMU/C.mmp (Kendall Square Research,1990)
(Wulf and Bell, 1972)
IBM RP3
ster et al, 1985)
NYU/
Ultracomputer
(Gottlieb et al, 1983)
BBN Butterfly
(BBN, 1989)

(a) Shared-memory track

nCUBE-2/6400
nCUBE Crop. 1990)

Cosmic Cube Intel iPSC’s Intel Paragon
(Seitz 1981) #(Intel Scientific = (Intel Supercomputer
Computers,1983) Systems, 1992)
Mosaic MIT/J Machine
Seitz 1992) ®=(Dally et al, 1992)

(b) Message-passing track

Figure 1.17 Two multiple-processor tracks with and without shared memory.

The Stanford Dash (Lenoski, Hennessy et al., 1992) is a NUMA multiprocessor
with distributed memories forming a global address space. Cache coherence is enforced
with distributed directories. The KSR-1 is a typical COMA model. The Fujitsu VPP
500 is a 222-processor system with a crossbar interconnect. The shared memories are
distributed to all processor nodes. We will study the Dash and the KSR-1 in Chapter
9 and the VPP500 in Chapter 8.

Following the Ultracomputer are two large-scale multiprocessors, both using mul-
tistage networks but with different interstage connections to be studied in Chapters 2
and 7. Among the systems listed in Fig. 1.17a, only the KSR-1, VPP500, and BBN
Butterfly (BBN Advanced Computers, 1989) are commercial products. The rest are

1.5 Architectural Development Tracks 43

research systems; only prototypes have been built in laboratories.

Message-Passing Track The Cosmic Cube (Seitz et al., 1981) pioneered the devel-
opment of message-passing multicomputers (Fig. 1.17b). Since then, Intel has produced
a series of medium-grain hypercube computers (the iPSCs). The nCUBE 2 also assumes
a hypercube configuration. The latest Intel system is the Paragon (1992) to be studied
in Chapter 7. On the research track, the Mosaic C (Seitz, 1992) and the MIT J-Machine
(Dally et al., 1992) are two fine-grain multicomputers to be studied in Chapter 9.

1.5.2 Multivector and SIMD Tracks
The 'multivector track is shown in Fig. 1.18a, and the SIMD track in Fig. 1.18b.

CDC Cyber205 ETA 10
ine, 1982) ————®"(ETA, Inc. 1989)
CDC 7600
ERG, 1 Cray Y-MP Cray/MPP
(Cray Research, 1989)™Cray Research, 1993)
Cray |
(Russell, 1978)
Fujitsu, NEC, Hitachi Models
(a) Multivector track
DAP 610
(AMT, Inc. 1987)
Goodyear MPP
(Batcher, 1980)
CM2 CMS5
C, 1990) =" (TMC, 1991)
Tiliac TV (TME 1990
(Bames et al, 1968)
MasPar MPI
(Nickolls, 1990)
BSP
(Kuck and Stokes, 1982)
IBM GF/11

(Beetem et al, 1985)
(b) SIMD track

Figure 1.18 Multivector and SIMD tracks.

44 Parallel Computer Models

Both tracks are used for concurrent scalar/vector processing. Detailed studies can
be found in Chapter 8.

Multivector Track These are traditional vector supercomputers. The CDC 7600
was the first vector dual-processor system. Two subtracks were derived from the CDC
7600. The Cray and Japanese supercomputers all followed the register-to-register archi-
tecture. Cray 1 pioneered the multivector development in 1978. The latest Cray/MPP
1s a massively parallel system with distributed shared memory. [t is supposed to work
as a back-end accelerator engine compatible with the existing Cray Y-MP Series.

The other subtrack used memory-to-memory architecture in building vector super-
computers. We have identified only the CDC Cvber 205 and its successor the ETA10
here. Since the production of both machines has been discontinued now, we list them
here simply for completeness in tracking different supercomputer architectures.

The SIMD Track The llliac IV pioneered the construction of SIMD computers,
even the array processor concept can be traced back far earlier to the 1960s. The
subtrack, consisting of the Goodyear MPP, the AMT/DAP610, and the TMC/CM-2,
are all SIMD machines built with bit-slice PEs. The CM-5 is a synchronized MIMD
machine executing in a multiple-SIMD mode.

The other subtrack corresponds to medium-grain SIMD computers using word-
wide PEs. -The BSP (Kuck and Stokes, 1982) was a shared-memory SIMD machine
built with 16 processors updating a group of 17 memory modules synchronously. The
GF11 (Beetem et al., 1985) was developed at the IBM Watson Laboratory for scientific
simulation research use. The MasPar MP1 is the only medium-grain SIMD computer
currently in production use. We will describe the CM-2, MasPar MP1, and CM-5 in
Chapter 8.

1.5.3 Multithreaded and Dataflow Tracks

These are two research tracks (Fig. 1.19) that have been mainly experimented with
in laboratories. Both tracks will be studied in Chapter 9. The following introduction
covers only basic definitions and milestone systems built today.

The conventional von Neumann machines are built with processors that execute
a single context by each processor at a time. In other words, each processor main-
tains a single thread of control with limited hardware resources. In a multithreaded
architecture. each processor can execute multiple contexts at the same time. The term
multithreading implies that there are multiple threads of control in each processor. Mul-
tithreading offers an effective mechanism for hiding long latency in building large-scale
multiprocessors.

As shown in Fig. 1.19a, the multithreading idea was pioneered by Burton Smith
(1978) in the HEP system which extended the concept of scoreboarding of multiple
functional units in the CDC 6400. The latest multithreaded multiprocessor projects
are the Tera computer (Alverson, Smith et al., 1990) and the MIT Alewife (Agarwal
et al., 1989) to be studied in Section 9.4. Until then, all multiprocessors studied use
single-threaded processors as building blocks.

1.6 Bibliographic Notes and Exercises 45

Tera

(Alverson, Smith, et al, 1990)
CDC 6600 HEP /
(CDC, 1964) “®(Smith 1978)

MIT/Alewife

(Agarwal et al, 1989)

(a) Multithreaded track

MIT Tagged Token Monsoon «T
Arvind et al, 1980) ™ (Papadopoulos & —®(Nikhil et al, 1991)
Culler, 1988)
Static Dataflow
(Dennis 1974)
Manchester Sigma 1| EMS
(Gurd & *=(Shimada et al, 1987) =" (Sakai et al, 1989)
Watson, 1982)

(b) Dataflow track

Figure 1.19 Multithreaded and dataflow tracks.

The Dataflow Track We will introduce the basic concepts of dataflow computers
in Section 2.3. Some experimental dataflow systems are described in Section 9.5. The
key idea is to use a dataflow mechanism, instead of a control-flow mechanism as in von
Neumann machines, to direct the program flow. Fine-grain, instruction-level parallelism
is exploited in dataflow computers.

As listed in Fig. 1.19b, the dataflow concept was pioneered by Jack Dennis (1974)
with a “static” architecture. The concept later inspired the development of “dynamic”
dataflow computers. A series of tagged-token architectures was developed at MIT by
Arvind and coworkers. We will describe the tagged-token architecture in Section 2:3.1

and then the *T prototype (Nikhil et al., 1991) in Section 9.5.3.
Anther important subtrack of dynamic dataflow computer is represented by the

Manchester machine (Gurd and Watson, 1982). The ETL Sigma 1 (Shimada et al.,
1987) and EMS5 have evolved from the MIT and Manchester machines. We will study
the EM5 (Sakai et al., 1989) in Section 9.5.2. These dataflow machines are still in the
research stage.

1.6 Bibliographic Notes and Exercises

Various machine architectures were classified by [Flynn72]. A recent collection
of papers on architectural alternatives for exploiting parallelism can be found in the

46 Parallel Computer Models

tutorial [Lilja92]. [Almasi89] and Gottlieb provided a thorough survey of research done
on parallel computing up to 1989. [Hwang89a) and DeGroot presented critical reviews on
parallel processing techniques developed for supercomputers and artificial intelligence.

[Hennessy90] and Patterson provided an excellent treatment of uniprocessor com-
puter design. For a treatment of earlier parallel processing computers, readers are
referred to [Hwang84] and Briggs. The layered classification of parallel computers was
proposed in [Ni91]. [Bell92] introduced the MIMD taxonomy. Systolic array was intro-
duced by [Kung78] and Leiserson. [Prasanna Kumar87] and Raghavendra proposed the
mesh architecture with broadcast buses for parallel computing.

Multiprocessor issues were characterized by [Gajski85) and Pier and by {Dubois88],
Scheurich, and Briggs. Multicomputer technology was assessed by [Athas88] and Seitz.
An introduction to existing parallel computers can be found in [Trew91] and Wilson.
Key references of various computer systems, listed in Bell's taxonomy (Fig. 1.10) and
in different architectural development tracks (Figs. 1.17 through 1.19), are identified
in the figures as well as in the bibliography. Additional references to these case-study
machines can be found in later chapters. A collection of reviews, a bibliography, and
indexes of resources in parallel systems can be found in [ACM91] with an introduction
by Charles Seitz.

A comparative study of NUMA and COMA multiprocessor models can be found in
[Stenstrom92], Joe, and Gupta. SIMD machines were modeled by [Siegel78]. The RAM
model was proposed by [Sheperdson63] and Sturgis. The PRAM model and variations
were studied in [Fortune78] and Wyllie, [Snir82|, and [Karp88|. The theory of NP-
completeness is covered in the book by [Cormen90|, Leiserson, and Rivest. The VLSI
complexity model was introduced in [Thompson80] and interpreted by [Ullman84] and
by [Seitz90] subsequently.

Readers are referred to the following journals and conference records for information
on recent developments:

e Journal of Parallel and Distributed Computing (Academic Press, since 1983).

e Journal of Parallel Computing (North Holland, Amsterdam, since 1984).

e JEEFE Transactions on Parallel and Distributed Systems (IEEE Computer Soci-
ety, since 1990).

e International Conference on Parallel Processing (Pennsylvania State University,
since 1972).

e International Symposium on Computer Architecture (IEEE Computer Society,
since 1972).

e Symposium on the Frontiers of Massively Parallel Computation (IEEE Computer
Society, since 1986).

e International Conference on Supercomputing (ACM, since 1987).

e Symposium on Architectural Support for Programming Languages and Operating
Systems (ACM, since 1975).

e Symposium on Parallel Algorithms and Architectures (ACM, since 1989).

» International Parallel Processing Symposium (IEEE Computer Society, since
1986).

1.6 Bibliographic Notes and Exercises 47

e JEEFE Symposium on Parallel and Distributed Processing (IEEE Computer Soci-
ety, since 1989).

Exercises

Problem 1.1 A 40-MHz processor was used to execute a benchmark program with
the following instruction mix and clock cycle counts:

Instruction type | Instruction count | Clock cycle count
Integer arithmetic 45000 1
Data transfer 32000 2
Floating point 15000 2
Control transfer 8000 2

Determine the effective CPI, MIPS rate, and execution time for this program.

Problem 1.2 Explain how instruction set, compiler technology, CPU implementation
and control, and cache and memory hierarchy affect the CPU performance and justify
the effects in terms of program length, clock rate, and effective CPL.

Problem 1.3 A workstation uses a 15-MHz processor with a claimed 10-MIPS rat-
ing to execute a given program mix. Assume a one-cycle delay for each memory ac-

CEss.

(a) What is the effective CPI of this computer?

(b) Suppose the processor is being upgraded with a 30-MHz clock. However, the speed
of the memory subsystem remains unchanged, and consequently two clock cycles
are needed per memory access. If 30% of the instructions require one memory
access and another 5% require two memory accesses per instruction, what is the
performance oY the upgraded processor with a compatible instruction set and equal
instruction counts in the given program mix?

Problem 1.4 Consider the execution of an object code with 200,000 instructions on
a 40-MHz processor. The program consists of four major types of instructions. The
instruction mix and the number of cycles (CPI) needed for each instruction type are
given below based on the result of a program trace experiment:

Instruction type CPI | Instruction mix
Arithmetic and logic 1 60%
Load /store with cache hit 2 18%
Branch 4 12%
Memory reference with cache miss | 8 10%

48 Parallel Computer Models

(2) Calculate the average CPI when the program is executed on a uniprocessor with
the above trace results.

(b) Calculate the corresponding MIPS rate based on the CPI obtained in part (a).

Problem 1.5 Indicate whether each of the following statements is true or false and
justify your answer with reasoning and supportive or counter examples:

(a) The CPU computations and I/O operations cannot be overlapped in a multipro-
grammed computer.

(b) Svnchronization of all PEs in an SIMD computer is done by hardware rather than
by software as is often done in most MIMD computers.

(c) As far as programmability is concerned, shared-memory multiprocessors offer sim-
pler interprocessor communication support than that offered by a message-passing
multicomputer.

(d) In an MIMD computer, all processors must execute the same instruction at the
same time synchronously.

(e) As far as scalability is concerned, multicomputers with distributed memory are
more scalable than shared-memory multiprocessors.

Problem 1.6 The execution times (in seconds) of four programs on three computers
are given below:

Execution Time (in seconds) .
Program | Computer A | Computer B | Computer C
Program 1 1 10 20
Program 2 1000 100 20
Program 3 500 1000 50
Program 4 100 800 100

Assume that 100,000,000 instructions were executed in each of the four programs.
Calculate the MIPS rating of each program on each of the three machines. Based on
these ratings, can you draw a clear conclusion regarding the relative performance of the
three computers? Give reasons if you find a way to rank them statistically.

Problem 1.7 Characterize the architectural operations of SIMD and MIMD com-
puters. Distinguish between multiprocessors and multicomputers based on their struc-

tures, resource sharing, and interprocessor communications. Also, explain the differ-
ences among UMA, NUMA, and COMA, and NORMA computers.

Problem 1.8 The following code segment, consisting of six instructions, needs to be
executed 64 times for the evaluation of vector arithmetic expression: D(I) = A(I) + B(I)
xC(I) for 0 <1 < 63.

Load R1, B(I) /R1 « Memory (a + I)/

1.6 Bibliographic Notes and Exercises 49

Load R2, C(I) /R2 «~ Memory (8 + 1)/

Multiply R1, R2 /R1 — (R1) x (R2)/
Load R3, A(I) /R3 « Memory (y + 1)/
Add R3, R1 /R3 «~ (R3) + (R1)/
Store D(I), R3 /Memory (8 + I) «— (R3)/

where R1, R2, and R3 are CPU registers, (R1) is the content of R1, a, 3,7, and 8 are
the starting memory addresses of arrays B(I), C(I), A(I), and D(I), respectively. Assume
four clock cycles for each Load or Store, two cycles for the Add, and eight cycles for the
Multiply on either a uniprocessor or a single PE in an SIMD machine.

(a) Calculate the total number of CPU cycles needed to execute the above code seg-
ment repeatedly 64 times on an SISD uniprocessor computer sequentially, ignoring
all other time delays.

(b) Consider the use of an SIMD computer with 64 PEs to execute the above vector

operations in six synchronized vector instructions over 64-component vector data
and both driven by the same-speed clock. Calculate the total execution time on
the SIMD machine, ignoring instruction broadcast and other delays.

(¢) What is the speedup gain of the SIMD computer over the SISD computer?

Problem 1.9 Prove that the best parallel algorithm written for an n-processor EREW-
PRAM model can be no more than O(logn) times slower than any algorithm for a
CRCW model of PRAM having the same number of processors.

Problem 1.10 Consider the multiplication of two n-bit binary integers using a 1.2-um
CMOS multiplier chip. Prove the lower bound AT? > kn?, where A is the chip area, T
is the execution time, n is the word length, and k is a technology-dependent constant.

Problem 1.11 Compare the PRAM models with physical models of real parallel
computers in each of the following categories:

(a) Which PRAM variant can best model SIMD machines and how?
(b) Repeat the question in part (a) for shared-memory MIMD machines.

Problem 1.12 Answer the following questions related to the architectural develop-
ment tracks presented in Section 1.5:

(a) For the shared-memory track (Fig. 1.17), explain the trend in physical memory
organizations from the earlier system (C.mmp) to more recent systrms (such as
Dash, etc.).

(b) Distinguish between medium-grain and fine-grain multicomputers in their archi-
tectures and programming requirements.

(¢) Distinguish between register-to-register and memory-to-memory architectures for
building conventional multivector supercomputers.

(d) Distinguish between single-threaded and multithreaded processor architectures.

50 Parallel Computer Models

Problem 1.13 Design an algorithm to find the maximum of n numbers in O(logn)
time on an EREW-PRAM model. Assume that initially each location holds one input
value. Explain how you would make the algorithm processor time optimal.

Problem 1.14 Develop two algorithms for fast multiplication of two n x n matrices

with a system of p processors, where 1 < p < n®/logn. Choose an appropriate PRAM

machine model to prove that the matrix multiplication can be done in T' = O(n®/p)

time.

(a) Prove that T = O(n?) if p = n. The corresponding algorithm must be shown,
similar to that in Example 1.5.

(b) Show the parallel algorithm with T' = O(n) if p = nZ.

Problem 1.15 Match each of the following eight computer systems: KSR-1, RP3,
Paragon, Dash, CM-2, VPP500, EM-5, and Tera, with one of the best descriptions
listed below. The mapping is a one-to-one correspondence.

(a) A massively parallel system built with multiple-context processors and a 3-D torus
architecture.

(b) A data-parallel computer built with bit-slice PEs interconnected by a hypercube/mesh
network.

(c) A ring-connected multiprocessor using a cache-only memory architecture.

(d) An experimental multiprocessor built with a dynamic datafiow architecture.

(e) A crossbar-connected multiprocessor built with distributed processor/memory nodes
forming a single address space.

(f) A multicomputer built with commercial microprocessors with multiple address
spaces.

(g) A scalable multiprocessor built with distributed shared memory and coherent
caches.

(h) An MIMD computer built with a large multistage switching network.

Chapter 2

Program and Network Properties

This chapter covers fundamental properties of program behavior and introduces
major classes of interconnection networks. We begin with a study of computational gran-
ularity, conditions for program partitioning, matching software with hardware, program
flow mechanisms, and compilation support for parallelism. Interconnection architectures
introduced include static and dynamic networks. Network complexity, communication
bandwidth, and data-routing capabilities are discussed.

2.1 Conditions of Parallelism

The exploitation of parallelism has created a new dimension in computer science. In
order to move parallel processing into the mainstream of computing, H.T. Kung (1991)
has identified the need to make significant progress in three key areas: computation
models for parallel computing, interprocessor communication in parallel architectures,
and system tniegration for incorporating paralle! systems into general computing envi-
ronments.

A theoretical treatment of parallelism is thus needed to build a basis for the above
challenges. In practice, parallelism appears in various forms in a computing environ-
ment. All forms can be attributed to levels of parallelism, computational granularity,
time and space complexities, communication latencies, scheduling policies, and load
balancing. Very often, tradeoffs exist among time, space, performance, and cost factors.

2.1.1 Data and Resource Dependences

The ability to execute several program segments in parallel requires each segment
to be independent of the other segments. The independence comes in various forms as
defined below separately. For simplicity, to illustrate the idea, we consider the depen-
dence relations among instructions in a program. In general, each code segment may
contain one or more statements.

We use a dependence graph to describe the relations. The nodes of a dependence
graph correspond to the program statements (instructions), and the directed edges

51

52 Program and Network Properties

with different labels show the ordered relations among the statements. The analysis of
dependence graphs shows where opportunity exists for parallelization and vectorization.

Data Dependence The ordering relationship between statements is indicated by
the data dependence. Five types of data dependence are defined below:

(1) Flow dependence: A statement S2 is flow-dependent on statement S1 if an exe-
cution path exists from S1 to S2 and if at least one output (variables assigned)
of S1 feeds in as input (operands to be used) to S2. Flow dependence is denoted
as S1 — S2.

(2) Antidependence: Statement S2 is antidependent on statement S1 if S2 follows S1
in program order and if the output of S2 overlaps the input to S1. A direct arrow
crossed with a bar as in S1 +— S2 indicates antidependence from S1 to S2.

(3) Output dependence: Two statements are output-dependent if they produce (write)
the same output variable. S1 e— S2 indicates output dependence from S1 to S2.

(4) I/O dependence: Read and write are I/O statements. I/O dependence occurs
not because the same variable is involved but because the same file is referenced
by both I/O statements.

(5) Unknown dependence: The dependence relation between two statements cannot
be determined in the following situations:

¢ The subscript of a variable is itself subscribed (indirect addressing).
e The subscript does not contain the loop index variable.

e A variable appears more than once with subscripts having different coeffi-
cients of the loop variable.

e The subscript is nonlinear in the loop index variable.

When one or more of these conditions exist, a conservative assumption is to claim
unknown dependence among the statements involved.

Example 2.1 Data dependence in programs

Consider the following code fragment of four instructions:

S1: Load R1, A /R1 « Memory(A)/
S2: Add R2, Rl /R2 « (R1) + (R2) /
S3: Move R1, R3 /R1 « (R3)/

S4: Store B, R1 /Memory(B) « (R1)/

As illustrated in Fig. 2.1a, S2 is flow-dependent on S1 because the variable
A is passed via the register R1. S3 is antidependent on S2 because of potential
conflicts in register content in R1. S3 is output-dependent on S1 because they both
modify the same register R1. Other data dependence relationships can be similarly
revealed on a pairwise basis. Note that dependence is a partial ordering relation;
that is, the members of not every pair of statements are related. For example, the
statements S2 and S4 in the above program are totally independent.

Next, we consider a code fragment involving 1/0O operations:

2.1 Conditions of Parallelism 53

S1: Read (4), A(I) /Read array A from tape unit 4/
S2: Rewind(4) /Rewind tape unit 4 /
S3: Write (4}, B(I) /Write array B into tape unit 4/
54: Rewind (4) /Rewind tape unit 4/

As shown in Fig. 2.1b, the read /write statements, S1 and S3, are I/0-dependent
on each other because they both access the same file from tape unit 4. The above
data dependence relations should not be arbitrarily violated during program execu-
tion. Otherwise, erroneous results may be produced with changed program order.
The order in which statements are executed in a program is often well defined.
Repetitive runs should produce identical results. On a multiprocessor system, the
program order may or may not be preserved, depending on the memory model
used. Determinism yielding predictable results can be controlled by a programmer
as well as by constrained modification of writable data in a shared memory.

Oan©

(b) 1/O dependence
caused by accessing
the same file by the
read and write state-
ments

(a) Dependence graph

Figure 2.1 Data and I/O dependences in the program of Example 2.1.

Control Dependence This refers to the situation where the order of execution of
statements cannot be determined before run time. For example, conditional state-

ments (IF in Fortran) will not be resolved until run time. Different paths taken after
a conditional branch may introduce or eliminate data dependence among instructions.
Dependence may also exist between operations performed in successive iterations of a
looping procedure. In the following, we show one loop example with and another with
out control-dependent iterations. The successive iterations of the following loop are
control-independent:

Do20I=1,N
A(D) = C(I)
IF (A(I) LT.0) A(I) =1
20 Continue

The following loop has control-dependent iterations:

54 Program and Network Properties

Dol0I=1N
IF (A(I-1) .EQ.0) A(I) =0
10 Continue

Control dependence often prohibits parallelism from being exploited. Compiler

techniques are needed to get around the control dependence in order to exploit more
parallelism.

Resource Dependence This is different from data or control dependence, which
demands the independence of the work to be done. Resource dependence is concerned
with the conflicts in using shared resources, such as integer units, floating-point units,
registers, and memory areas, among parallel events. When the conflicting resource is
an ALU, we call it ALU dependence.

If the conflicts involve workplace storage, we call it storage dependence. In the case
of storage dependence, each task must work on independent storage locations or use
protected access (such as locks or monitors to be described in Chapter 11) to shared
writable data.

The transformation of a sequentially coded program into a parallel executable form
can be done manually by the programmer using explicit parallelism, or by a compiler
detecting implicit parallelism automatically. In both approaches, the decomposition of
programs is the primary objective.

Program partitioning determines whether a given program can be partitioned or
split into pieces that can execute in parallel or follow a certain prespecified order of
execution. Some programs are inherently sequential in nature and thus cannot be
decomposed into parallel branches. The detection of parallelism in programs requires a
check of the various dependence relations.

Bernstein’s Conditions In 1966, Bernstein revealed a set of conditions based on
which two processes can execute in parallel. A process is a software entity corresponding
to the abstraction of a program fragment defined at various processing levels. We define
the input set I; of a process P; as the set of all input variables needed to execute the
process.

Similarly, the output set O; consists of all output variables generated after execution
of the process P;. Input variables are essentially operands which can be fetched from
memory or registers, and output variables are the results to be stored in working registers
or memory locations.

Now, consider two processes P, and P, with their input sets I; and I, and output
sets O, and O3, respectively. These two processes can execute in parallel and are
denoted P; || P; if they are independent and do not create confusing results.

Formally, these conditions are stated as follows:

L Nn O, = 0
L n O, = 0 (2.1)
01 N 02 —-— 0

2.1 Conditions of Parallelism 55

These three equations are known as Bernstein’s conditions. The input set I; is also
called the read set or the domain of P, by other authors. Similarly, the output set O,
has been called the write set or the renge of a process P,. In terms of data dependences,
Bernstein’s conditions simply imply that two processes can exccute in parallel if they
are flow-independent, antiindependent, and output-independent.

The parallel execution of two processes produces the same results regardless of
whether they are executed sequentially in any order or in parallel. This is possible only
if the output of one process will not be used as input to the other process. Furthermore,
the two processes will not modify (write) the same set of variables, either in memory or
in the registers.

In general, a set of processes, P;, P, ..., Pi, can execute in parallel if Bernstein’s
conditions are satisfied on a pairwise basis; thatis, P, || P2 || P; || - - - || Pi if and only if
P; || P; for all i # j. This is exemplified by the following program illustrated in Fig. 2.2.

Example 2.2 Detection of parallelism in a program using Bernstein’s
conditions

Consider the simple case in which each process is a single HLL statement. We
want to detect the parallelism embedded in the following five instructions labeled
P, P, P3, Py, and Ps in program order.

P]i C = DxFE
P: M = G+C
P;: A = B+C (22)
P4I C - L+4"I
Ps: F = G+FE

Assume that each statement requires one step to execute. No pipelining is con-
sidered here. The dependence graph shown in Fig. 2.2a demonstrates flow depen-
dence as well as resource dependence. In sequential execution, five steps are needed
(Fig. 2.2b).

If two adders are available simultaneously, the parallel execution requires only
three steps in Fig. 2.2c. Pairwise, there are 10 pairs of statements to check against
Bernstein's conditions. Only 5 pairs, P, || Ps, P || P, P || Ps,Ps || Pa, and
P; || Ps, can execute in parallel as revealed in Fig. 2.2a if there are no resource
conflicts. Collectively, only P, || P; || Ps is possible (Fig. 2.2c) because P, || P;,
P; " Ps, and P " P, are all possible.

[

In general, the parallelism relation || is commutative; i.e., P, || P; implies P; || P;.
But the relation is not transitive; i.e., P; || P; and P; || P do not necessarily guarantee
P; || Pi. For example, we have P; || Ps and Ps | Py, but P, § P>, where § means P,
and P, cannot execute in parallel. In other words, the order in which P and P, are
executed will make a difference in the computational results.

Therefore, || is not an equivalence relation. However, P; || P; || Py implies asso-
ciativity; i.e., (P || P;) | P« = P || (P; || Pi), since the order in which the parallel

56

(a) A dependence graph showing both data dependence (solid arrows)
and resource dependence (dashed arrows)

Time
0 E
"
a *Prga ok
L ’t et i B B
153
+y |Pe
F v 10 - F
(b) Sequential execution in five (c) Parallel execution in three steps,
steps, assuming one step per state- assuming two adders are available
ment (no pipelining) per step

Figure 2.2 Detection of parallelism in the program of Example 2.2.

executable processes are executed should not make any difference in the output sets. It
should be noted that the condition I; N I; # @ does not prevent parallelism between F;
and P;.

Violations of any one or more of the three conditions in Eq. 2.1 prohibits parallelism
between two processes. In general, violation of any one or more of the 3n(n — 1)/2
Bernstein’s conditions among n processes prohibits parallelism collectively or partially.
Many program constructs may prohibit parallelism.

Any statements or processes which depend on run-time conditions are not trans-
formed to parallel form. These include IF statements or conditional branches. Recursive
computations in successive iterations also prohibit parallelism. In general, data depen-
dence, control dependence, and resource dependence all prevent parallelism from being
exploitable.

The statement-level dependence can be generalized to higher levels, such as code

2.1 Conditions of Parallelism 57

segment, subroutine, process, task, and program levels. The dependence of two higher-
level objects can be inferred from the dependence of statements in the corresponding
objects. The goals of analyzing the data dependence, control dependence, and resource
dependence in a code are to identify opportunities for parallelization or vectorization.

Very often program restructuring or code transformations need to be performed
before such opportunities can be revealed. The dependence relations are used in in-
struction issue and pipeline scheduling operations described in Chapter 6. We wish to
build intelligent compilers to detect parallelism automatically. Further discussion of
compiler techniques is given in Chapter 10.

2.1.2 Hardware and Software Parallelism

For implementation of parallelism, we need special hardware and software support.
In this section, we address these support issues. We first distinguish between hardware
and software parallelism. The mismatch problem between hardware and software is
discussed. Then we describe the fundamental concept of compilation support needed to
close the gap between hardware and software.

Details of special hardware functions and software support for parallelism will be
treated in the remaining chapters. The key idea being conveyed is that parallelism
cannot be achieved free. Besides theoretical conditioning, joint efforts between hardware
designers and software programmers are needed to exploit parallelism in upgrading
computer performance.

Hardware Parallelism This refers to the type of parallelism defined by the machine
architecture and hardware multiplicity. Hardware parallelism is often a function of cost
and performance tradeoffs. It displays the resource utilization patterns of simultane-
ously executable operations. It can also indicate the peak performance of the processor
resources.

One way to characterize the parallelism in a processor is by the number of instruc-
tion issues per machine cycle. If a processor issues k instructions per machine cycle,
then it is called a k-issue processor.

A conventional processor takes one or more machine cycles to issue a single instruc-
tion. These types of processors are called one-issue machines, with a single instruction
pipeline in the processor. In a modern processor, two or more instructions can be issued
per machine cycle.

For example, the Intel i960CA is a three-issue processor with one arithmetic, one
memory access, and one branch instruction issued per cycle. The IBM RISC/System
6000 is a four-issue processor capable of issuing one arithmetic, one memory access, one
floating-point, and one branch operation per cycle.

A multiprocessor system built with n k-issue processors should be able to handle a
maximum number of nk threads of instructions simultaneously.

Software Parallelism This type of parallelism is defined by the control and data
dependence of programs. The degree of parallelism is revealed in the program profile
or in the program flow graph. Software parallelism is a function of algorithm, program-

58 Program and Network Properties

ming style, and compiler optimization. The program flow graph displays the patterns
of simultaneously executable operations. Parallelism in a program varies auring the
execution period. It often limits the sustained performance of the processor.

Example 2.3 Mismatch between software parallelism and hardware par-
allelism (Wen-Mei Hwu, 1991)

Consider the example program graph in Fig. 2.3a. There are eight instructions
(four loads and four arithmetic operations) to be executed in three consecutive
machine cycles. Four load operations are performed in the first cycle, followed by
two multiply operations in the second cycle and two add/subtract operations in
the third cycle. Therefore, the parallelism varies from 4 to 2 in three cycles. The
average software parallelism is equal to 8/3 = 2.67 instructions per cycle in this
example program.

h%w e

(a) Software parallelism (b) Hardware parallelism

Figure 2.3 Executing an example program by a two-issue superscalar processor.

Now consider execution of the same program by a two-issue processor which
can execute one memory access (load or write) and one arithmetic (add, subtract,
multiply, etc.) operation simultaneously. With this hardware restriction, the pro-
gram must execute in seven machine cycles as shown in Fig. 2.3b. Therefore, the
hardware parallelism displays an average value of 8/7 = 1.14 instructions executed
per cycle. This demonstrates a mismatch between the software parallelism and the
hardware parallelism.

Let us try to match the software parallelism shown in Fig. 2.3a in a hard-
ware platform of a dual-processor system, where single-issue processors are used.

2.1 Conditions of Parallelism 59

The achievable hardware parallelism is shown in Fig. 2.4, where L/S stands for
load/store operations. Note that six processor cycles are needed to execute the 12
instructions by two processors. §; and S, are two inserted store operations, and I
and lg are two inserted load operations. These added instructions are needed for
interprocessor communication through the shared memory.

© i O\ o

Cycle 2

D@ O—O—EC
O—©® @O—@—C
i

A 8

Figure 2.4 Dual-processor execution of the program in Fig. 2.3a.

Of the many types of software parallelism, two are most frequently cited as im-
portant to parallel programming: The first is control parallelism, which allows two or
more operations to be performed simultaneously. The second type has been called data
parallelism, in which almost the same operation is performed over many data eclements
by many processors simultaneously.

Control parallelism, appearing in the form of pipelining or multiple functional units,
is limited by the pipeline length and by the multiplicity of functional units. Both
pipelining and functional parallelism are handled by the hardware; programmers need
take no special actions to invoke them.

Data parallelism offers the highest potential for concurrency. It is practiced in both
SIMD and MIMD modes on MPP systems. Data parallel code is easier to write and to
debug than control parallel code. Synchronization in SIMD data parallelism is handled
by the hardware. Data parallelism exploits parallelism in proportion to the quantity

60 Program and Network Properties

of data involved. Thus data parallel computations appeal to scaled problems, in which
the performance of a MPP does not drop sharply with small sequential fraction in the
program.

To solve the mismatch problem between software parallelism and hardware par-
allelism, one approach is to develop compilation support, and the other is through
hardware redesign for more efficient exploitation by an intelligent compiler. These two
approaches must cooperate with each other to produce the best result.

Hardware processors can be better designed to exploit parallelism by an optimizing
compiler. Pioneer work in processor technology with this objective can be found in the
IBM 801, Stanford MIPS, and Berkeley RISC. Most processors use a large register file
and sustained instruction pipelining to execute nearly one instruction per cycle. The
large register file supports fast access to temporary values generated by an optimizing
compiler. The registers are exploited by the code optimizer and global register allocator
in such a compiler.

The instruction scheduler exploits the pipeline hardware by filling branch and load
delay slots. In superscalar and superpipelining, hardware and software branch predic-
tion, multiple instruction issue, speculative execution, high bandwidth instruction cache,
and support for dynamic scheduling are needed to facilitate the detecticn of parallelism
opportunities. The architecture must be designed interactively with the compiler.

2.1.3 The Role of Compilers

Compiler techniques are used to exploit hardware features to improve performance.
The pioneer work on the IBM PL.8 and Stanford MIPS compilers has aimed for this goal.
Other optimizing compilers for exploiting parallelism include the CDC STACKLIB,
Cray CFT, Illinois Parafrase, Rice PFC, Yale Bulldog, and Illinois IMPACT.

In Chapter 10, we will study loop transformation, software pipelining, and features
developed in existing optimizing compilers for supporting parallelism. Interaction be-
tween compiler and architecture design is a necessity in modern computer development.
Most existing processors issue one instruction per cycle and provide a few registers. This
may cause excessive spilling of temporary results from the available registers. There-
fore, more software parallelism may not improve performance in conventional scalar
Processors.

There exists a vicious cycle of limited hardware support and the use of a naive
compiler. To break the cycle, one must design the compiler ana the hardware jointly
at the same time. Interaction between the two can lead to a better solution to the
mismatch problem between software and hardware parallelism.

The general guideline is to increase the flexibility in hardware parallelism and to
exploit software parallelism in control-intensive programs. Hardware and software de-
sign tradeoffs also exist in terms of cost, complexity, expandability, compatibility, and
performance. Compiling for multiprocessors is much more invoived than for unipro-
cessors. Both granularity and communication latency play important roles in the code
optimization and scheduling process.

2.2 Program Partitioning and Scheduling 61

2.2 Program Partitioning and Scheduling

This section introduces the basic definitions of computational granularity or level
of parallelism in programs. Communication latency and scheduling issues are illustrated
with programming examples.

2.2.1 Grain Sizes and Latency

Grain size or granularity is a measure o1 the amount of computation involved in
a software process. The simplest measure is to count the number of instructions in
a grain (program segment). Grain size determines the basic program segment chosen
for parallel processing. Grain sizes are commonly described as fine, medium, or coarse,
depending on the processing levels involved.

Latency is a time measure of the communication overhead incurred between ma-
chine subsystems. For example, the memory latency is the time required by a processor
to access the memory. The time required for two processes to synchronize with each
other is called the synchronization latency. Computational granularity and communsi-
cation latency are closely related. We reveal their relationship below.

Parallelism has been exploited at various processing levels. Asillustrated in Fig. 2.5,
five levels of program execution represent different computational grain sizes and chang-
ing communication and control requirements. The lower the level, the finer the granu-
larity of the software processes.

In general, the execution of a program may involve a combination of these levels.
The actual combination depends on the application, formulation, algorithm, language,
program, compilation support, and hardware limitations. We characterize below the
parallelism levels and review their implementation issues from the viewpoints of a pro-
grammer and of a compiler writer.

Instruction Level At instruction or statement level, a typical grain contains less than
20 instructions, called fine grain in Fig. 2.5. Depending on individual programs, fine-
grain parallelism at this level may range from two to thousands. Butler et al. (1991) has
shown that single-instruction-stream parallelism is greater than two. Wall (1991) finds
that the average parallelism at instruction level is around five, rarely exceeding seven,
in an ordinary program. For scientific applications, Kumar (1988) has measured the av-
erage parallelism in the range of 500 to 3000 Fortran statements executing concurrently
in an idealized environment.

The advantage of fine-grain computation lies in the abundance of parallelism. The
exploitation of fine-grain parallelism can be assisted by an optimizing compiler which
should be able to automatically detect parallelism and translate the source code to a
parallel form which can be recognized by the run-time system. Instruction-level paral-
lelism is rather tedious for an ordinary programmer to detect in a source code.

Loop Level This corresponds to the iterative loop operations. A typical loop contains
less than 500 instructions. Some loop operations, if independent *n successive iterations,
can be vectorized for pipelined execution or for lock-step execution on SIMD machines.

62 Program and Network Properties

W
Level 5 Jobs or programs |

>Coarse grain
Subprograms, job A
Level 4 steps or related
parts of a program P
Medium grain
Increasi Procedures, subroutines, .
commu:'lgaﬁon Lovel 3 tasks, or coroutines :"'9;?; I?;g:\e
demand and J
scheduling
overhead |
Level 2 | Nonrecursive loops or)
unfolded iterations
Fine grain
Instructions or)
A

Figure 2.5 Levels of parallelism in program execution on modern computers.
(Reprinted from Hwang, Proc. [EEE, October 1987)

Some loop operations can be self-scheduled for parallel execution on MIMD machines.

Loop-level parallelism is the most optimized program construct to execute on a
parallel or vector computer. However, recursive loops are rather difficult to parallelize.
Vector processing is mostly exploited at the loop level (level 2 in Fig. 2.5) by a vectorizing
compiler. The loop level is still considered a fine grain of computation.

Procedure Level This level corresponds to medium-grain size at the task, procedu-
ral, subroutine, and coroutine levels. A typical grain at this level contains less than
2000 instructions. Detection of parallelism at this level is much more difficult than at
the finer-grain levels. Interprocedural dependence analysis is much more involved and
history-sensitive.

The communication requirement is often less compared with that required in MIMD
execution mode. SPMD execution mode is a special case at this level. Multitasking
also belongs in this category. Significant efforts by programmers may be needed to
restructure a program at this level, and some compiler assistance is also needed.

Subprogram Level This corresponds to the level of job steps and related subpro-
grams. The grain size may typically contain thousands of instructions. Job steps can
overlap across different jobs. Subprograms can be scheduled for different processors in

2.2 Program Partitioning and Scheduling 63

SPMD or MPMD mode, often on message-passing multicomputers.

Multiprogramming on a uniprocessor or on a multiprocessor is conducted at this
level. In the past, parallelism at this level has been exploited by algorithm designers or
programmers, rather than by compilers. We do not have good compilers for exploiting
medium- or coarse-grain parallelism at present.

Job (Program) Level This corresponds to the parallel execution of essentially in-
dependent jobs (programs) on a parallel computer. The grain size can be as high as
tens of thousands of instructions in a single program. For supercomputers with a small
number of very powerful processors, such coarse-grain parallelism is practical. Job-level
parallelism is handled by the program loader and by the operating system in general.
Time-sharing or space-sharing multiprocessors explore this level of parallelism. In fact,
both time and space sharing are extensions of multiprogramming.

To summarize, fine-grain parallelism is often exploited at instruction or loop levels,
preferably assisted by a parallelizing or vectorizing compiler. Medium-grain parallelism
at the task or job step demands significant roles for the programmer as well as compilers.
Coarse-grain parallelism at the program level relies heavily on an effective OS and on
the efficiency of the algorithm used. Shared-variable communication is often used to
support fine-grain and medium-grain computations.

Message-passing multicomputers have been used for medium- and coarse-grain com-
putations. In general, the finer the grain size, the higher the potential for parallelism
and the higher the communication and scheduling overhead. Fine grain provides a
higher degree of parallelism, but heavier communication overhead, as compared with
coarse-grain computations. Massive parallelism is often explored at the fine-grain level,
such as data parallelism on SIMD or MIMD computers.

Communication Latency By balancing granularity and latency, one can achieve
better performance of a computer system. Various latencies are attributed to machine
architecture, implementing technology, and communication patterns involved. The ar-
chitecture and technology affect the design choices for latency tolerance between sub-
systems. In fact, latency imposes a limiting factor on the scalability of the machine size.
For example, memory latency increases with respect to memory capacity. Thus mem-
ory cannot be increased indefinitely without exceeding the tolerance level of the access
latency. Various latency hiding or tolerating techniques will be studied in Chapter 9.

The latency incurred with interprocessor communication is another important pa-
rameter for a system designer to minimize. Besides signal delays in the data path, IPC
latency is also affected by the communication patterns involved. In general, n tasks
communicating with each other may require n(n — 1)/2 communication links among
them. Thus the complexity grows quadratically. This leads to a communication bound
which limits the number of processors allowed in a large computer system.

Communication patterns are determined by the algorithms used as well as by the
architectural support provided. Frequently encountered patterns include permutations
and broadcast, multicast, and conference (many-to-many) communications. The com-
munication demand may limit the granularity or parallelism. Very often tradeoffs do
exist between the two.

64 Program and Network Properties

The communication issue thus involves the reduction of latency or complexity, the
prevention of deadlock, minimizing blocking in communication patterns, and the trade-
off between parallelism and communication overhead. We will study techniques that

minimize communication latency, prevent deadlock, and optimize grain size throughout
the book.

2.2.2 Grain Packing and Scheduling

Two fundamental questions to ask in parallel programming are: (i) How can we
partition a program into parallel branches, program modules, microtasks, or grains
to yield the shortest possible execution time? and (ii) What is the optimal size of
concurrent grains in a computation?

This grain-size problem demands determination of both the number and the size of
grains (or microtasks) in a parallel program. Of course, the solution is both problem-
dependent and machine-dependent. The goal is to produce a short schedule for fast
execution of subdivided program modules.

There exists a tradeofl between parallelism and scheduling/synchronization over-
head. The time complexity involves both computation and communication overheads

The program partitioning involves the algorithm designer, programmer, compiler, op-
erating system support, etc. We describe below a grain packing approach introduced
by Kruatrachue and Lewis (1988) for parallel programming applications.

Example 2.4 Program graph before and after grain packing (Kruatrachue
and Lewis, 1988)

The basic concept of program partitioning is introduced below. In Fig. 2.6, we
show an example program graph in two different grain sizes. A program graph shows
the structure of a program. It is very similar to the dependence graph introduced in
Section 2.1.1. Each node in the program graph corresponds toa computational unit
in the program. The grain size is measured by the number of basic machine cycles
(including both processor and memory cycles) needed to execute all the operations
within the node.

We denote each node in Fig. 2.6 by a pair (n,s), where n is the node name
(id) and s is the grain size of the node. Thus grain size reflects the number of
computations involved in a program segment. Fine-grain nodes have a smaller
grain size, and coarse-grain nodes have a larger grain size.

The edge label (v, d) between two end nodes specifies the output variable » from
the source node or the input variable to the destination node, and the communi-
cation delay d between them. This delay includes all the path delays and memory
latency involved.

There are 17 nodes in the fine-grain program graph (Fig. 2.6a) and 5 in the
coarse-grain program graph (Fig. 2.6b). The coarse-grain node is obtained by
combining (grouping) multiple fine-grain nodes. The fine grain corresponds to the
following program:

Val' a,b,C,d,e,f,y, hs isj! k?l!m!n?o’p’q

2.2 Program Partitioning and Scheduling 656

(n,s) = (node, grain size)
(x,1) = (input, delay)
.0 (uk) = output, delay)

(b) Coarse-grain program graph

(a) Fine-grain program graph before packing after ing

Figure 2.6 A program graph before and after grain packing in Example 2.4. (Mod-
ified from Kruatrachue and Lewis, JEEE Software, Jan. 1988)

Begin
1. a:=1 10. ji=exf
2. b:=2 11. k:=dxf
3. ¢i=3 12. l:=jxk
4, d:=4 13. m:=4 x|
5. e:=05 14. n:=3xm
6. f:=6 15. 0:=nXi
7. g:=axb 16. p=oxh
8. h:=exd 17. g:=pxgq
9. i:=dxe

End

Nodes 1, 2, 3, 4, 5, and 6 are memory reference (data fetch) operations. Each
takes one cycle to address and six cycles to fetch from memory. All remaining nodes
(7 to 17) are CPU operations, each requiring two cycles to complete. After packing,
the coarse-grain nodes have larger grain sizes ranging from 4 to 8 as shown.

The node (A,8) in Fig. 2.6b is obtained by combining the nodes (1,1), (2,1),
(3,1), (4,1), (5,1), (6,1), and (11,2) in Fig. 2.6a. The grain size, 8, of node A is the
summation of all grain sizes (1+1+1+1+ 1+ 1+ 2= 8) being combined.

"

2.2 Program Partitioning and Scheduling 67

2.2.3 Static Multiprocessor Scheduling

Grain packing may not always produce a shorter schedule. In general, dynamic
multiprocessor scheduling is an NP-hard problem. Very often heuristics are used to yield
suboptimal solutions. We introduce below the basic concepts behind multiprocessor
scheduling using static schemes.

Node Duplication In order to eliminate the idle time and to further reduce the
communication delays among processors, one can duplicate some of the nodes in more
than one processor.

Figure 2.8a shows a schedule without duplicating any of the five nodes. This
schedule contains idle time as well as long interprocessor delays (8 units) between P1
and P2. In Fig. 2.8b, node A is duplicated into A’ and assigned to P2 besides retaining
the original copy A in P1. Similarly, a duplicated node C’ is copied into P1 besides the
original node C in P2. The new schedule shown in Fig. 2.8b is almost 50% shorter than
that in Fig. 2.8a. The reduction in schedule time is caused by elimination of the (a, 8)
and (c, 8) delays between the two processors.

P, P, Py, P

.
.
.
.
.
Al
g
.
'
.
)
’
1
.
)
L)
)
.
.
‘
-

TR B NN ees.

: o (b) Schedule with node duplication (A — A
(a) Schedule without node duplication and A’: C — C and C’)

Figure 2.8 Node-duplication scheduling to eliminate communication delays be-
tween processors. (I: idle time; shaded areas: communication delays)

Grain packing and node duplication are often used jointly to determine the best
grain size and corresponding schedule. Four major steps are involved in the grain
determination and the process of scheduling optimization:

Step 1. Construct a fine-grain program graph.

Step 2. Schedule the fine-grain computation.

Step 3. Grain packing to produce the coarse grains.

Step 4. Generate a parallel schedule based on the packed graph.

The purpose of multiprocessor scheduling is to obtain a minimal time schedule for
the computations involved. The following example clarifies this concept.

72 Program and Network Properties

...

Precsancssvssnsmsancssneomans

(a) The global architecture (b) Interior design of a processing element

Figure 2.12 The MIT tagged-token dataflow computer. (Adapted from Arvind and
Tannucci, 1986 with permission)

other PEs through the routing network. All internal token circulation operations are
pipelined without blocking.

One can think of the instruction address in a dataflow computer as replacing the
program counter, and the context identifier replacing the frame base register in a control
flow computer. It is the machine’s job to match up data with the same tag to needy
~instructions. In so doing, new data will be produced with a new tag indicating the
successor instruction(s). Thus, each instruction represents a synchronization operation.
New tokens are formed and circulated along the PE pipeline for reuse or to other PEs
through the global path, which is also pipelined.

Another synchronization mechanism, called the I-structure, is provided within each
PE. The I-structure is a tagged memory unit for overlapped usage of a data structure
by both the producer and consumer processes. Each word of I-structure uses a 2-bit
tag indicating whether the word is empty, is full, or has pending read requests. The use
of I-structure is a retreat from the pure dataflow approach. The purpose is to reduce
excessive copying of large data structures in dataflow operations.

Example 2.6 Comparison of dataflow and control-flow computers (Gajski,
Padua, Kuck, and Kuhn, 1982)

A
The dataflow graph in Fig. 2.13a shows that 24 instructions are to be executed (8

dimndes, 8 rnultiplies, and 8 adds). A dataflow graph is similar to a dependence graph
or program graph. The only difference is that data tokens are passed around the
edges in a dataflow graph. Assume that each add, multiply, and divide requires 1, 2,

2.4 System Interconnect Architectures 77

PE data routing in SIMD computers.

Before we analyze various network topologies, let us define several parameters often
used to estimate the complexity, communication efficiency, and cost of a network. In
general, a network is represented by the graph of a finite number of nodes linked by
directed or undirected edges. The number of nodes in the graph is called the network

StZe.

Node Degree and Network Diameter The number of edges (links or channels)
incident on a node is called the node degree d. In the case of unidirectional channels, the
number of channels into a node is the in degree, and that out of a node is the out degree.
Then the node degree is the sum of the two. The node degree reflects the number of /O
ports required per node, and thus the cost of a node. Therefore, the node degree should
be kept a constant, as small as possible in order to reduce cost. A constant node degree
is very much desired to achieve modularity in building blocks for scalable systems.

The diameter D of a network is the maximum shortest path between any two nodes.
The path length is measured by the number of links traversed. The network diameter
indicates the maximum number of distinct hops between any two nodes, thus providing a
figure of communication merit for the network. Therefore, the network diameter should
be as small as possible from a communication point of view.

Bisection Width When a given network is cut into two equal halves, the minimum
number of edges (channels) along the cut is called the channel bisection width b. In
the case of a communication network, each edge corresponds to a channel with w bit
wires. Then the wire bisection width is B = bw. This parameter B reflects the wiring
density of a network. When B is fixed, the channel width (in bits) w = B/b. Thus the
bisection width provides a good indicator of the maximum communication bandwidth
along the bisection of a network. All other cross sections should be bounded by the
bisection width.

Another quantitative parameter is the wire length (or ¢haanel length) between
nodes. This may affect the signal latency, clock skewing, or power requirements. We
label a network symmetric if the topology is the same looking from any node. Symmetric
networks are easier to implement or to program. Whether the nodes are homogeneous,
the channels are buffered, or some of the nodes are switches are other useful properties
for characterizing the structure of a network.

Data-Routing Functions A data-routing network is used’for inter-PE data ex-
change. This routing network can be static, such as the hypercube routing network
used in the TMC/CM-2, or dynamic such as the multistage network used in the IBM
GF11. In the case of a multicomputer network, the data routing is achieved through
message passing. Hardware routers are used to route messages among multiple computer
nodes.

We specify below some primitive data-routing functions implementable on an inter-
PE routing network. The versatility of a routing network will reduce the time needed
for data exchange and thus can significantly improve the system performance.

Commonly seen data-routing functions among the PEs include shifting, rotation,

82 Program and Network Properties

bidirectional. It is symmetric with a constant node degree of 2. The diameter is | N/2]
for a bidirectional ring, and N for unidirectional ring.

The IBM token ring has this topology, in which messages circulate along the ring
until they reach the destination with a matching token. Pipelined or packet-switched,
rings have been implemented in the CDC Cyberplus multiprocessor (1985) and in the
KSR-1 computer system (1992) for interprocessor communications.

By increasing the node degree from 2 to 3 or 4, we obtain two chordal rings as shown
in Figs. 2.16c and 2.16d, respectively. One and two extra links are added to produce the
two chordal rings, respectively. In general, the more links added, the higher the node
degree and the shorter the network diameter.

Comparing the 16-node ring (Fig. 2.16b) with the two chordal rings (Figs. 2.16c and
2.16d), the network diameter drops from 8 to 5 and to 3, respectively. In the extreme,
the completely connected network in Fig. 2.16f has a node degree of 15 with the shortes?
possible diameter of 1.

Barrel Shifter As shown in Fig. 2.16e for a network of N = 16 nodes, the barrel
shifter is obtained from the ring by adding extra links from each node to those nodes
having a distance equal to an integer power of 2. This implies that node i is connected
to node j if |j — i| = 2" for some r = 0,1,2,---,n — 1 and the network size is N = 2".
Such a barrel shifter has a node degree of d = 2n — 1 and a diameter D = n/2.

Obviously, the connectivity in the barrel shifter is increased over that of any chordal
ring of lower node degree. For N = 16, the barrel shifter has a node degree of 7 with
a diameter of 2. But the barrel shifter complexity is still much lower than that of the
completely connected network (Fig. 2.16f).

Tree and Star A binary tree of 31 nodes in five levels is shown in Fig. 2.17a. In
general, a k-level, completely balanced binary tree should have N = 2* — 1 nodes. The
maximum node degree is 3 and the diameter is 2(k ~ 1). With a constant node degree,
the binary tree is a scalable architecture. However, the diameter is rather long.

(a) Binary tree (b) Star (c) Binary fat tree

Figure 2.17 Tree, star, and fat tree.

2.4 System Interconnect Architectures 87

is embedded in a plane.

do—fo—fo—{o- Jo—f—{o—{
1 {+—{1 L} {"{;])

atd—t H
LJ \/ J'J \/ \/ % \/ %__)

(a) Traditional torus (a 4-ary 2-cube) (b) A torus with folded connections

Figure 2.21 Folded connections to equalize the wire length in a torus network.
(Courtesy of W. Dally; reprinted with permission from /FEE Trans. Computers,
June 1990)

William Dally (1990) has revealed a number of interesting properties of k-ary n-
cube networks. The cost of such a network is dominated by the amount of wire, rather
by the number of switches required. Under the assumption of constant wire bisection,
low-dimensional networks with wide channels provide lower latency, less contention, and
higher hot-spot throughput than higher-dimensional networks with narrow channels.

Network Throughput The network throughput is defined as the total number of
messages the network can handle per unit time. One method of estimating throughput
is to calculate the capacity of a network, the total number of messages that can be in
the network at once. Typically, the maximum throughput of a network is some fraction
of its capacity.

A hot spot is a pair of nodes that accounts for a disproportionately large portion of
the total network traffic. Hot-spot traffic can degrade performance of the entire network
by causing congestion. The hot-spot throughput of a network is the maximum rate at
which messages can be sent from one specific node F; to another specific node P;.

Low-dimensional networks operate better under nonuniform loads because they
have more resource sharing. In a high-dimensional network, wires are assigned to par-
ticular dimensions and cannot be shared between dimensions. For example, in a binary
n-cube, it is possible for a wire to be saturated while a physically adjacent wire as-
signed to a different dimension remains idle. In a torus, all physically adjacent wires
are combined into a single channel which is shared by all messages.

Minimum network latency is achieved when the network radix k£ and dimension n

92 Program and Network Properties

(a) Straight (b) Crossover
0 o o 0
(c) Upper broadcast (d) Lower broadcast

A A AT AF

Atk e
(T

(el

!
‘:‘ ‘(‘ :

=10
11

’ j L | -
" ~ ‘ 13

7 . x : —14
18§

(e) A 16 x 16 Omega network

Figure 2.24 The use of 2 x 2 switches and perfect shuffle as an interstage connection
pattern to construct a 16 x 16 Omega network. (Courtesy of Duncan

Lawrie; reprinted with permission from JEEE Trans. Computers, Dec. 1975)

In general, an n-input Omega network requires log, n stages of 2 x 2 switches. Each
stage requires n/2 switch modules. In total, the network uses nlog, n/2 switches. Each
switch module is individually controlled.

Various combinations of the switch states implement different permutations, broad-
cast, or other connections from the inputs to the outputs. The interconnection capabil-
ities of the Omega and other networks will be further studied in Chapter 7.

Baseline Network Wu and Feng (1980) have studied the relationship among a

2.5 Bibliographic Notes and Exercises 97

Exercises

Problem 2.1 Define the following terms related to parallelism and dependence rela-
tions:

(a) Computational granularity. (f) I/O dependence.

(b) Communication latency. (g) Control dependence.

(c¢) Flow dependence. (h) Resource dependence.
(d) Antidependence. (i) Bernstein conditions.
(e) Output dependence. (j) Degree of parallelism.

Problem 2.2 Define the following terms for various system interconnect architectures:

(a) Node degree. (g) Multicast and broadcast.
(b) Network diameter. (h) Mesh versus torus.

(c¢) Bisection bandwidth. (i) Symmetry in networks.
(d) Static connection networks. (j) Multistage networks.
(e) Dynamic connection networks. (k) Crossbar networks.

(f) Nonblocking networks. (1) Digital buses.

Problem 2.3 Answer the following questions on program flow mechanisms and com-
puter models:

(a) Compare control-flow, dataflow, and reduction computers in terms of the program
flow mechanism used.

(b) Comment on the advantages and disadvantages in control complexity, potential for
parallelism, and cost-effectiveness of the above computer models.

(¢c) What are the differences between string reduction and graph reduction machines?

Problem 2.4 Perform a data dependence analysis on each of the following Fortran
program fragments. Show the dependence graphs among the statements with justifica-
tion.

(a) (b)
S1: A=B+D S1: X = SIN(Y)
S2: C=Ax3 S2: Z=X+W
S3: A=A+C S3: Y=-25xW
S4: E=A/ 2 S4: X = COS(2)

(¢) Determine the data dependences in the same and adjacent iterations of the follow-
ing Do-loop.

102 Program and Network Properties

equivalence among the Omega, Flip, and Baseline networks.

(a) Prove that the Omega network (Fig. 2.24) is topologically equivalent to the Baseline
network (Fig. 2.25b) .

(b) The Flip network (Fig. 2.27) is constructed using inverse perfect shuffie (Fig. 2.14b)
for interstage connections. Prove that the Flip network is topologically equivalent
to the Baseline network.

(c) Based on the results obtained in (a) and (b), prove the topological equivalence
between the Flip network and the Omega network.

— — B - -.s
\ \
/ —

[
| |
]

— : /
L ,— _'[—— - 10
6 — — — —8
7 —1 - — /r--jg
8 - —/ 1
9 — - 3
10— | \ ' / 5
19 - 13
13— | N 1
14— 7

Figure 2.27 A 16 x 16 Flip network. (Courtesy of Ken Batcher; reprinted from
Proc. Int. Conf. Parallel Processing, 1976)

Problem 2.16 Answer the following questions for the k-ary n-cube network:

(a) How many nodes are there?

(b) What is the network diameter?

(c) What is the bisection bandwidth?

(d) What is the node degree?

(e) Explain the graph-theoretic relationship among k-ary n-cube networks and rings,
meshes, tori, binary n-cubes, and Omega networks.

(f) Explain the difference between a conventional torus and a folded torus.

(g) Under the assumption of constant wire bisection, why do low-dimensional networks

3.1 Performance Metrics and Measures 107

In discrete form, we have

B -

Example 3.1 Example parallelism profile and average parallelism of a
divide-and-conquer algorithm (Sun and Ni, 1993)

As illustrated in Fig. 3.1, the parallelism profile of an example divide-and-
conquer algorithm increases from 1 to its peak value m = 8 and then decreases
to 0 during the observation period (t,,1;).

Degree of ParaNetism
(DOF)

..

-

2 4 7 10 v 5 v 20 24 27
Time —*

Figure 3.1 Parallelism profile of a divide-and-conquer algorithm.

In Fig. 3.1, the average parallelism A = (1 x54+2x3+3x44+4x6+5x
24+6x2+8x3)/(5+3+4+6+2+2+3)=93/25 = 3.72. In fact, the total
workload W = A A (t; — t;), and A is an upper bound of the asymptotic speedup
to be defined below.

|

Available Parallelissn There is a wide range of potential parallelism in application
programs. Engineering and scientific codes exhibit a high DOP due to data parallelism.
Manoj Kumar (1988) has reported that computation-intensive codes may execute 500 to
3500 arithmetic operations concurrently in each clock cycle in an idealized environment.
Nicolau and Fisher (1984) reported that standard Fortran programs averaged about a

112 Principles of Scalable Performance

upper-bounded by 1/a, regardless of how many processors are employed.

In Fig. 3.3, we plot Eq. 3.16 as a function of n for four values of a. When a = 0,
the ideal speedup is achieved. As the value of a increases from 0.01 to 0.1 to 0.9, the
speedup performance drops sharply.

a=0.01

a=0.1

a=08

4 16 64 256 1024 n

Figure 3.3 Speedup performance with respect to the probability distribution r =
(a,0,...,0,1 — a) where « is the fraction of sequential bottleneck

For many years, Amdahl’s law has painted a very gloomy and pessimistic picture
for parallel processing. That is, the system performance cannot be high as long as the
serial fraction a exists. We will further examine Amdahl’s law in Section 3.3.1 from the

perspective of workload growth.

3.1.3 Efficiency, Utilization, and Quality

Ruby Lee (1980) has defined several parameters for evaluating parallel computa-
tions. These are fundamental concepts in parallel processing. Tradeoffs among these
performance factors are often encountered in real-life applications.

System Efficiency Let O(n) be the total number of unit operations performed by
an n-processor system and 7T(n) be the execution time in unit time steps. In general,
T(n) < O(n) if more than one operation is performed by n processors per unit time,
where n > 2. Assume 7(1) = O(1) in a uniprocessor system. The speedup factor is
defined as

S(n)=T(1)/T(n) (3.17)
The system efficiency for an n-processor system is defined by
E(n) = 3®) _ T() (3.18)

n nl(n)

3.1 Performance Metrics and Measures 117

Table 3.2 Dhrystone Version 1.1 Results and Relative MIPS Perfor-

mance of Some Systems

System KDhrystone/s | Relative MIPS
VAX 11/780 1.7 1.0
VAX 8600 6.4 3.7
Cray 1S 14.8 8.4
IBM 3081 15.0 8.5
Sun4/260(SPARC) 16.8 9.8
Cray X/MP 18.5 10.5
SPARC, 16.7 MHz 19.0 10.8
IBM 3090/200 31.2 17.8
M88100, 20 MHz 35.7 20.3
MIPS R3000, 25 MHz 43.1 24.5
Intel 1860, 33.3 MHz 72.5 41.2
MC68040,25MHz 40.0 23.5
180486, 25MHz 24.0 14.1
AMD 29000,25MHz 21.1 12.4
NS 32532,25MHz 18.3 10.7
IBM RS/6000,25MHz 60.7 35.7
Source: Weicker (1984), Cocke and Markstein (1990), and National Semiconduc-

tor (1988).

The TPS and KLIPS Ratings On-line transaction processing applications demand
rapid, interactive processing for a large number of relatively simple transactions. They
are typically supported by very large databases. Automated teller machines and airline
reservation systems are familiar examples.

The throughput of computers for on-line transaction processing is often measured in
transactions per second (TPS). Each transaction may involve a database search, query
answering, and database update operations. Business computers should be designed to
deliver a high TPS rate. The TP1 benchmark was originally proposed in 1985 for mea-
suring the transaction processing of business application computers. This benchmark

Table 3.3 Some Whestone Results, Single Precision, Reported by
DEC in January 1986

System KWhestones/s
HP3000/930 2.84
IBM 4381/11 2.00
DEC 11/780 1.15
Sun 3/50 0.86
IBM RT/PC 0.20

Source: DEC, Digital Review, January 1986; all others: company claims.

122 Principles of Scalable Performance

puter Systems, the CM-5 by Thinking Machine Corporation, the KSR-1 by Kendall
Square Research, the Fujitsu VPP500 System, the Tera computer, and the MIT *T
system.

Recently, IBM announced an MPP project using thousands of IBM RS/6000 pro-
cessors. Cray Research plans to develop an MPP system using Digital’s Alpha processors
as building blocks. These MPP projects are summarized in Table 3.5. We will study
some of these systems in later chapters.

Table 3.5 Representative Massively Parallel Processing Systems

MPP System Architecture, Technology, and Operational Features
Intel Paragon A 2-D mesh-connected multicomputer, built with i860 XP pro-
cessors and wormhole routers, targeted for 300 Gflops in peak
performance.

IBM MPP Model Use IBM RISC/6000 processors as building blocks, 50 Gflops
peak expected for a 1024-processor configuration.

TMC CM-5 A universal architecture for SIMD/MIMD computing using
SPARC PEs and custom-designed FPUs, control and data net-
works, 2 Tflops peak for 16K nodes,

Cray Research A 3D torus heterogeneous architecture using DEC Alpha chips
MPP Model with special communication support, global address space over
physically distributed memory; first system offers 150 Gflops in
a 1024-processor configuration in 1993; will eventually grow to
Tflops with larger configurations.

Kendall Square An ALLCACHE ring-connected multiprocessor with custom-
Research KSR-1 designed processors, 43 Gflops peak performance for a 1088-
processor configuration.

Fujitsu VPP500 A crossbar-connected 222-PE MIMD vector system, with shared |
distributed memories using VP2000 as a host; peak performance
= 355 Gflops; first delivery in September 1993.

3.2.2 Application Models of Parallel Computers

In general, if the workload or problem size s is kept unchanged as shown by curve
a in Fig. 3.6a, then the efficiency F decreases rapidly as the machine size n increases.
The reason is that the overhead h increases faster than the machine size. To maintain
the efficiency at a desired level, one has to increase the machine size and problem
size proportionally. Such a system is known as a scalable computer for solving scaled
problems.

In the ideal case, we like to see a workload curve which is a linear function of n
(curve v in Fig. 3.6a). This implies linear scalability in problem size. If the linear
workload curve is not achievable, the second choice is to achieve a sublinear scalability
as close to linearity as possible, as illustrated by curve 3 in Fig. 3.6a.

Suppose that the workload follows an exponential growth pattern and becomes

3.2 Parallel Processing Applications 127

tsoefficiency function as’follows:

fe(n) = C x h(s,n) {(3.24)
If the workload w(s) grows as fast as fg(n) in Eq. 3.23, then a constant efficiency can
be maintained for a given algorithm-architecture combination. Two examples are given
below to illustrate the use of isoefficiency functions for scalability analysis.

Example 3.4 Scalability of matrix multiplication algorithms (Gupta and
Kumar, 1992)

Four algorithms for matrix multiplication are compared below. The problem size
3 is represented by the matrix order. In other words, we consider the multiplication
of two s x s matrices A and B to produce an output matrix C = A x B. The total
workload involved is w = O(s*). The number of processors used is confined within
1 < n < & Some of the algorithms may use less than s* processors.

Table 3.6 Asymptotic Isoefficiency Functions of Four Matrix Multipli-
cation Algorithms (Gupta and Kumar, 1992)

Matrix Isoefficiency Range Target
Multiplication Function of Machine
Algorithm fe(n) Applicability Architecture
Fox, Otto, and Hey O(n’nT 1<n< s* A \/r-'i X \/;' torus
(1987)
Berntsen O(n’) 1<n< a7 [A hypercube with
(1989) | | n = 2** nodes
Gupta and Kumar O(n(logn)®) 1<n<s° A hypercube with
(1992) n = 2°* nodes
and k < %logs
Dekel, Nassimi, and O(nlogn) s7<n<s A hypercube with
Sahni (1981) n = s = 2°* nodes

Note: Two s X 8 matrices are multiplied.

The isoefficiency functions of the four algorithms are derived below based on
equating the workload with the communication overhead (Eq. 3.23) in each algo-
rithm. Details of these algorithms and corresponding architectures can be found
in the original papers identified in Table 3.6 as well as in the paper by Gupta and
Kumar (1992). The derivation of the communication overheads is left as an exercise
in Problem 3.14.

The Fox-Otto-Hey algorithm has a total overhead h(s,n) = O(nlogn + s%\/n).
The workload w = O(s*) = O(nlogn + s?y/n). Thus we must have O(s*) =
O(nlogn) and O(s) = O(y/n). Combining the two, we obtain the isoefficiency
function O(s®) = O(n%/?), where 1 < n < s? as shown in the first row of Table 3.6.

132 Principles of Scalable Performance

Workioad tmﬂm‘rm
Ty
W [Wy [Wy (W, |\ w%ﬁ,_ T
T
Wi | Wo W, W, W, W, Ta I, Ty
(a) Fixed workload (b) Decreasing execution time
Speedup

(Sp)

0% 1% 2% 3% 4% 100%
Sequential fraction of program

(c) Speedup with a fixed load

Figure 3.8 Fixed-load speedup model and Amdahl’s law.

Scaling for Higher Accuracy Time-critical applications provided the major mo-
tivation leading to the development of the fixed-load speedup model and Amdahl’s
law. There are many other applications that emphasize accuracy more than minimum
turnaround time. As the machine size is upgraded to obtain more computing power, we
may want to increase the problem size in order to create a greater workload, producing
more accurate solution and yet keeping the execution time unchanged.

Many scientific modeling and engineering simulation applications demand the so-
lution of very large-scale matrix problems based on some partial differential equation
(PDE) formulations discretized with a huge number of grid points. Representative ex-

3.3 Speedup Performance Laws 137

than the memory requirement, as is often true in some scientific simulation and en-
gineering applications, the fixed-memory model (Fig. 3.10) may yield an even higher
speedup (i.e., S; > S, > S,,) and better resource utilization.

4T Workload Execution Time
W,
W,
A
W,
W, Wa
W,
w W,
1
123455“’" 1 2 3 4 5 6 "
No. of processors No. of processors
(a) Scaled workload (b) Slightly increased execution time

Figure 3.10 Scaled speedup model using fixed memory (Courtesy of Sun and Ni;
reprinted with permission from ACM Supercomputing, 1990)

The fixed-memory model also assumes a scaled workload and allows a slight increase
in execution time. The increase in workload (problem size) is memory-bound. The
growth in machine size is limited by increasing communication demands as the number
of processors becomes very large. The fixed-time model can be moved very close to the
fixed-memory model if available memory is fully utilized.

Example 3.6 Scaled matrix multiplication using global versus local com-
putation models (Sun and Ni, 1993)

In scientific computations, matrix often represents some discretized data contin-
uum. Enlarging the matrix size generally leads to a more accurate solution for the
continuum. For matrices with dimension n, the number of computations involved
in matrix multiplication is 2n® and the memory requirement is roughly M = 3n2.

As the memory increases n times in an n-processor multicomputer system,
nM = n x 3n? = 3n®. If the enlarged matrix has a dimension of N, then
3n® = 3N?2. Therefore, N = n'®*. Thus G(n) = n!®, and the scaled workload
W = G(n)W, =n'*W,. Using Eq. 3.35, we have

Wi +nl'sun Wi +nl'5”‘n
1'5 0-5
n'°*W, Wi +n%5W,
W, + n : -

ST (3.36)

142 Principles of Scalable Performance

where T(s,n) is the parallel execution time on the PRAM, ignoring all communication
overhead. The scalability is defined as follows:

S(s,n) _ Ty(s,n)
Si(s,n) T(s,n)

®(s,n) = (3.40)

Intuitively, the larger the scalability, the better the performance that the given
architecture can yield running the given algorithm. In the ideal case, Sy(s,n) = n, the
scalability definition in Eq. 3.40 becomes identical to the efficiency definition given in

Eq. 3.39.

Example 3.7 Scalability of various machine architectures for parity cal-
culation (Nussbaum and Agarwal, 1991)

Table 3.7 shows the execution times, asymptotic speedups, and scalabilities
(with respect to the EREW-PRAM model) of five representative interconnection
architectures: linear array, meshes, hypercube, and Omega network, for running a
parallel parity calculation.

Table 3.7 Scalability of Various Network-Based Architectures for the Parity Cal-

culation
Metrics Machine Architecture
Linear array | 2-D mesh | 3-D mesh | Hypercube | Omega Network
T(s,n) s'/? st/3 st/4 log s log? s
S(s,n) g!/? §2/3 g3/4 s/ logs s/log’s
®(s,n) | logs/s''? |logs/s'® | logs/s'/* 1 1/logs

This calculation examines s bits, determining whether the number of bits set
is even or odd using a balanced binary tree. For this algorithm, T(s,1) = s,
Ti(s,n) =logs, and Sy(s,n) = s/log s for the ideal PRAM machine.

On real architectures, the parity algorithm's performance is limited by network
diameter. For example, the linear array has a network diameter equal to n — 1,
vielding a total parallel running time of s/n+n. The optimal partition of the prob-
lem is to use n = /s processors so that each processor performs the parity check
on /s bits locally. This partition gives the best match between computation costs
and communication costs with T'(s,n) = s'/2,S(s,n) = s'/2 and thus scalability
®(s,n) = logs/s'/?.

The 2D and 3D mesh architectures use a similar partition to match their own
communication structure with the computational loads, yielding even better scala-

3.4 Scalability Analysis and Approaches 147

floating-point number.

For a balanced multicomputer, the computation time within each node and
inter-node communication latency should be equal. Thus 0.07n%us equals 6nus
communication latency, implying that n has to be at least as large as 86. A node
memory of capacity 86% x 8 = 640K x 8 = 5120 Kwords = 5 megabytes is needed
to hold each subdomain of data.

On the other hand, suppose each message exchange takes 2us (one receive and
one send) per word. The communication latency is doubled. We desire to scale up
the problem size with an enlarged local memory of 32 megabytes. The subdomain
dimension size n can be extended to at most 160, because 160° x 8 = 32 megabytes.
This size problem requires 0.3 s of computation time and 2 x 0.15 s of send and
receive time. Thus each iteration takes 0.6 (0.3 + 0.3) s, resulting in a computation
rate of 50 Mflops, which is only 50% of the peak speed of each node.

If the problem size n is further increased, the effective Mflops rate and efficiency
will be improved. But this cannot be achieved unless the memory capacity is further
enlarged. For a fixed memory capacity, the situation corresponds to the memory-
bound region shown in Fig. 1.10c. Another risk of problem scaling is to exacerbate
the limited I/O capability which is not demonstrated in this example.

To summarize the above studies on scalability, we realize that the machine size,
problem size, and technology scalabilities are not necessarily orthogonal to each other.
They must be considered jointly. In the next section, we will identify additional is-
sues relating scalability studies to software compatibility, latency tolerance, machine
programmability, and cost-effectiveness.

3.4.3 Research Issues and Solutions

Toward the development of truly scalable computers, much research needs to be
done. In this section, we briefly identify several frontier research problems. Partial
solutions to these problems will be studied in subsequent chapters.

The Problems When a computer is scaled up to become an MPP system, the
following difficulties will arise:

o Memory-access latency becomes too long and too nonuniformly distributed to be
considered tolerable.

e The IPC complexity or synchronization overhead becomes too high to be useful.

e The multicache inconsistency problem becomes out of contrel.

e The processor utilization rate deteriorates as the system size becomes large.

o Message passing (or page migration) becomes too time-consuming to benefit
resource sharing in a large distributed system.

e Overall system performance becomes saturated with diminishing return as system
size increases further.

152 Principles of Scalable Performance

next 32 iterations (I = 33 to 64), and so on. What are the execution time and
speedup factors compared with part (a)? (Note that the computational workload,
dictated by the J-loop, is unbalanced among the processors.)

(c¢) Modify the given program to facilitate a balanced parallel execution of all the
computational workload over 32 processors. By a balanced load, we mean an
equal number of additions assigned to each processor with respect to both loops.

(d) What is the minimum execution time resulting from the balanced parallel execution
on 32 processors? What is the new speedup over the uniprocessor?

Problem 3.8 Consider the multiplications of two n x n matrices A = (a;;) and
B = (b;;) on a scalar uniprocessor and on a multiprocessor, respectively. The matrix
elements are floating-point numbers, initially stored in the main memory in row-major.
The resulting product matrix C' = (¢,;) where C = A x B, should be stored back to
memory in contiguous locations.

Assume a 2-address instruction format and an instruction set of your choice. Each
load /store instruction takes, on the average, 4 cycles to complete. All ALU operations
must be done sequentially on the processor with 2 cycles if no memory reference is
required in the instruction. Otherwise, 4 cycles are added for each memory reference to
fetch an operand. Branch-type instructions require, on the average, 2 cycles.

(a) Write a minimal-length assembly-language program to perform the matrix mul-
tiplication on a scalar processor with a load-store architecture and floating-point
hardware.

(b) Calculate the total instruction count, the total number of cycles needed for the
program execution, and the average cycles per instruction (CPI).

(¢) What is the MIPS rate of this scalar machine, if the processor is driven by a
40-MHz clock?

(d) Suggest a partition of the above program to execute the divided program parts on
an N-processor shared-memory system with minimum time. Assume n = 1000N.
Estimate the potential speedup of the multiprocessor over the uniprocessor, assum-
ing the same type of processors are used in both systems. Ignore the memory-access
conflicts, synchronization and other overheads.

(e) Sketch a scheme to perform distributed matrix computations with distributed data
sets on an N-node multicomputer with distributed memory. Each node has a
computer equivalent to the scalar processor used in part (a).

(f) Specify the message-passing operations required in part (e). Suppose that, on the
average, each message passing requires 100 processor cycles to complete. Esti-
mate the total execution time on the multicomputer for the distributed matrix
multiplication. Make appropriate assumptions if needed in your timing analysis.

Problem 3.9 Consider the interleaved execution of the four programs in Problem 1.6
on each of the three machines. Each program is executed in a particular mode with the
measured MIPS rating.

158 Processors and Memory Hierarchy

Based on these trends, the mapping of processors in Fig. 4.1 reflects their imple-
mentation during the past decade. As time passes, some of the mapped ranges may
move toward the lower right corner of the design space.

5.0 |- Most likely future

10 -

Cycles Per Instruction

05 -

02 -

0.1 }=

[N N N SR SR S -
0 S 10 20 S0 100 200 500 1000 WMH:z

Clock Rate

Figure 4.1 Design space of modern processor families.

The Design Space Conventional processors like the Intel 1486, M68040, VAX /8600,
IBM 390, etc., fall into the family known as complez-instruction-set computing (CISC)
architecture. The typical clock rate of today’s CISC processors ranges from 33 to 50
MHz. With microprogrammed control, the CPI of different CISC instructions varies
from 1 to 20. Therefore, CISC processors are at the upper left of the design space.

Today's reduced-instruction-set computing (RISC) processors, such as the Intel i860,
SPARC, MIPS R3000, IBM RS/6000, etc., have faster clock rates ranging from 20 to
120 MHz determined by the implementation technology employed. With the use of
hardwired control, the CPI of most RISC instructions has been reduced to one to two
cycles.

A special subclass of RISC processors are the superscalar processors, which allow
multiple instructions to be issued simultaneously during each cycle. Thus the effective
CPI of a superscalar processor should be lower than that of a generic scalar RISC pro-

4.1 Advanced Processor Technology 163

making the instruction set very large and very complex. The growth of instruction sets
was also encouraged by the popularity of microprogrammed control in the 1960s and
1970s. Even user-defined instruction sets were implemented using microcodes in some
processors for special-purpose applications.

A typical CISC instruction set contains approximately 120 to 350 instructions using
variable instruction/data formats, uses a small set of 8 to 24 general-purpose registers
(GPRs), and executes a large number of memory reference operations based on more
than a dozen addressing modes. Many HLL statements are directly implemented in
hardware/firmware in a CISC architecture. This may simplify the compiler develop-
ment, improve execution efficiency, and allow an extension from scalar instructions to
vector and symbolic instructions.

Reduced Instruction Sets We started with RISC instruction sets and gradually
moved to CISC instruction sets during the 1980s. After two decades of using CISC
processors, computer users began to reevaluate the performance relationship between
instruction-set architecture and available hardware/software technology.

Through many years of program tracing, computer scientists realized that only 25%
of the instructions of a complex instruction set are frequently used about 95% of the
time. This implies that about 75% of hardware-supported instructions often are not
used at all. A natural question then popped up: Why should we waste valuable chip
area for rarely used instructions?

With low-frequency elaborate instructions demanding long microcodes to execute
them, it may be more advantageous to remove them completely from the hardware and
rely on software to implement them. Even if the software implementation is slow, the
net result will be still a plus due to their low frequency of appearance. Pushing rarely
used instructions into software will vacate chip areas for building more powerful RISC
or superscalar processors, even with on-chip caches or floating-point units.

A RISC instruction set typically contains less than 100 instructions with a fixed
instruction format (32 bits). Only three to five simple addressing modes are used. Most
instructions are register-based. Memory access is done by load/store instructions only.
A large register file (at least 32) is used to improve fast context switching among multiple
users, and most instructions execute in one cycle with hardwired control.

Because of the reduction in instruction-set complexity, the entire processor is imple-
mentable on a single VLSI chip. The resulting benefits include a higher clock rate and
a lower CPI, which lead to higher MIPS ratings as reported on commercially available
RISC /superscalar processors.

Architectural Distinctions Hardware features built into CISC and RISC processors
are compared below. Figure 4.4 shows the architectural distinctions between modern
CISC and traditional RISC. Some of the distinctions may disappear, because future
processors may be designed with features from both types.

Conventional CISC architecture uses a unified cache for holding both instructions
and data. Therefore, they must share the same data/instruction path. In a RISC
processor, separate instruction and data caches are used with different access paths.
However, exceptions do exist. In other words, CISC processors may also use split codes.

168 Processors and Memory Hierarchy
Table 4.3 Representative CISC Scalar Processors
Feature Intel 1486 Motorola MC68040 NS 32532
Instruction- 157 instructions, 113 instructions, 63 instructions,
set size and 32 bits. 32 bits. 32 bits.
word length
Addressing 12 18 9
modes
Integer unit 32-bit ALU 32-bit ALU 32-bit ALU
and GPRs with 8 registers. with 16 registers. with 8 registers.
On-chip 8-KB unified cache 4-KB code cache 512-B code cache
cache(s) and for both code 4-KB data cache 1-KB data cache.
MMUs and data. with separate MMUs.
Floating-point | On-chip with On-chip with 3 Off-chip FPU
unit, registers, 8 FP registers pipeline stages, NS 32381, or
and function adder, multiplier, 8 80-bit FP WTL 3164.
units shifter. registers,
Pipeline stages 5 6 4
Protection level 4 2 2
Memory Segmented paging Paging with 4 or 8 Paging with
organization with 4 KB/page KB/page, 64 entries 4 KB/page,
and TLB/ATC | and 32 entries in TLB. | in each ATC. 64 entries.
entries
Technology, CHMOS 1V, 0.8—um HCMOS, 1.25—pum CMOS
clock rate, 25 MHz, 33 MHz, 1.2M transistors, 370K transistors,
packaging, 1.2M transistors, 20 MHz, 40 MHz, 30 MHz,
and year 168 pins, 1989. 179 pins, 1990. 175 pins, 1987,
introduced
Claimed 24 MIPS at 25 MHz, 20 MIPS at 25 MHz, 15 MIPS
performance 30 MIPS at 60 MHz. at 30 MHz.
Successors 1586, MC68050, unknown.
to watch i686. MC68066.

modes. The instruction set includes data movement, integer, BCD, and floating-
point arithmetic, logical, shifting, bit-field manipulation, cache maintenance, and
multiprocessor communications, in addition to program and system control and
memory management instructions.

The integer unit is organized in a six-stage instruction pipeline. The floating-
point unit consists of three pipeline stages (details to be studied in Section 6.4.1).
All instructions are decoded by the integer unit. Floating-point instructions are
forwarded to the floating-point unit for execution.

Separate instruction and data buses are used to and from the instruction and
data memory units, respectively. Dual MMUs allow interleaved fetch of instructions
and data from the main memory. Both the address bus and the data bus are 32
bits wide.

Three simultaneous memory requests can be generated by the dual MMUs,

4.1 Advanced Processor Technology 173

Eight of these registers are global registers shared by all procedures, and the re-
maining 24 are window registers associated with only each procedure. The concept
of using overlapped register windows is the most important feature introduced by
the Berkeley RISC architecture.

(b) Eight register windows forming a circular stack

Figure 4.8 The concept of overlapping register windows in the SPARC architec-
ture. (Courtesy of Sun Microsystems, Inc., 1987)

The concept is illustrated in Fig. 4.8 for eight overlapping windows (formed
with 64 local registers and 64 overlapped registers) and eight globals with a total

178 Processors and Memory Hierarchy

4.2.1 Superscalar Processors

Superscalar processors are designed to exploit more instruction-level parallelism in
user programs. Only independent instructions can be executed in parallel without caus-
ing a wait state. The amo : of instruction-level parallelism varies widely depending
on the type of code being e.ecuted.

It has been observed that the average value is around 2 for code without loop
unrolling. Therefore, for these codes there is not much benefit gained from building a
machine that can issue more then three instructions per cycle. The instruction-issue
degree in a superscalar processor has thus been limited to 2 to 5 in practice.

Pipelining in Superscalar Processors The fundamental structure of a superscalar
pipeline is illustrated in Fig. 4.11. This diagram shows the use of three instruction
pipelines in parallel for a triple-issue processor. Superscalar processors were originally
developed as an alternative to vector processors.

0O 1 2 3 4 5 6 7 8 9 TmeinBaseCycles

Figure 4.11 A superscalar processor of degree m = 3.

A superscalar processor of degree m can issue m instru-tions per cycle. In this
sense, the base scalar processor, implemented either ir P 5C or CISC, has m = 1.
In order to fully utilize a superscalar processor of deg: ;e m, m instructions must be
executable in parallel. This situation may not be true in all clock cycles. In that case,
some of the pipelines may be stalling in a wait state.

In a superscalar processor, the simple operation latency should require only one
cycle, as in the base scalar processor. Due to the desire for a higher degree of instruction-
level parallelism in programs, the superscalar processor depends more on an optimizing
compiler to exploit parallelism.

In theory, a superscalar processor can attain the same performance as a machine
with vector hardware. A superscalar machine that can issue a fixed-point, floating-point,
load, and branch all in one cycle achieves the same effective parallelism as a vector
machine which executes a vector load, chained into a vector add, with one element
loaded and added per cycle. This will become more evident as we discuss pipeline
chaining for vector processors in Chapters 6 and 8. A typical superscalar architecture

4.2 Superscalar and Vector Processors 183

1
Load/ F.P.
Store Add
Unit Unit

= = [=]

«{a) A typical VLIW processor and instruction format

0 1 2 3 4 5 6 7 8 9 TmeinBaseCycles

(b) VLIW execution with degree m = 3

Figure 4.14 The architecture of a very long instruction word (VLIW) processor
and its pipeline operations. (Courtesy of Multifiow Computer, Inc., 1987)

to seven operations to be executed concurrently with 256 bits per VLIW instruction.

VLIW Opportunities In a VLIW architecture, random parallelism among scalar
operations is exploited instead of regular or synchronous parallelism as in a vectorized
supercomputer or in an SIMD computer. The success of a VLIW processor depends
heavily on the efficiency in code compaction. The architecture is totally incompatible
with that of any conventional general-purpose processor.

Furthermore, the instruction parallelism embedded in the compacted code may
require a different latency to be executed by different functional units even though the
instructions are issued at the same time. Therefore, different implementations of the
same VLIW architecture may not be binary-compatible with each other.

By explicitly encoding parallelism in the long instruction, a VLIW processor can
eliminate the hardware or software needed to detect parallelism. The main advantage

188 Processors and Memory Hierarchy

The Symbolics 3600 executes most Lisp instructions in one machine cycle. In-
teger instruction fetch operands form the stack buffer and the duplicate top of the
stack in the scratch-pad memory. Floating-point addition, garbage collection, data
type checking by the tag processor, and fixed-point addition can be carried out in
parallel.

u

4.3 Memory Hierarchy Technology

In a typical computer configuration, the cost of memory, disks, printers, and other
peripherals has far exceeded that of the central processor. We briefly introduce below
the memory hierarchy and peripheral technology.

4.3.1 Hierarchical Memory Technology

Storage devices such as registers, caches, main memory, disk devices, and tape units
are often organized as a hierarchy as depicted in Fig. 4.17. The memory technology and
storage organization at each level are characterized by five parameters: the access time
(t,), memory size (s,), cost per byte (¢;), transfer bandwidth (b;), and unit of transfer
(z;).

The access time t; refers to the round-trip time from the CPU to the ith-level
memory. The memory size s; is the number of bytes or words in level i. The cost of
the ith-level memory is estimated by the product ¢;s;. The bandwidth b; refers to the
rate at which information is transferred between adjacent levels. The unit of transfer
z; refers to the grain size for data transfer between levels ¢ and i + 1.

Memory devices at a lower level are faster to access, smaller in size, and more
expensive per byte, having a higher bandwidth and using a smaller unit of transfer as
compared with those at a higher level. In other words, we have t;,_; < {,, 8,1 < s;,
Ci-1 > ¢Ci, byy > b;,and z,_| <z, for i = 1,2,3, and 4, in the hierarchy where i = 0
corresponds to the CPU register level. The cache is at level 1, main memory at level
2, the disks at level 3, and the tape unit at level 4. The physical memory design and
operations of these levels are studied in subsequent sections and in Chapter 5.

Registers and Caches The register and the cache are parts of the processor complex,
built either on the processor chip or on the processor board. Register assignment is
often made by the compiler. Register transfer operations are directly controlled by the
processor after instructions are decoded. Register transfer is conducted at processor
speed, usually in one clock cycle.

Therefore, many designers would not consider registers a level of memory. We
list them here for comparison purposes. The cache is controlled by the MMU and is
programmer-transpa.ent. The cache can also be implemented at one or multiple levels,
depending on the speed and application requirements.

Main Memory The main memory is sometimes called the primary memory of a
computer system. It is usually much larger than the cache and often implemented by

4.3 Memory Hierarchy Technology 193

cache, copies of that word must be updated immediately or eventually at all higher
levels. The hierarchy should be maintained as such. Frequently used information is
often found in the lower levels in order to minimize the effective access time of the
memory hierarchy. In general, there are two strategies for maintaining the coherence in
a memory hierarchy.

The first method is called write-through (WT), which demands immediate update
in M;;, if a word is modified in M;, fori=1,2,...,n - 1.

The second method is write-back (WB), which delays the update in M, until
the word being modified in M; is replaced or removed from M;. Memory replacement
policies are studied in Section 4.4.3.

Locality of References The memory hierarchy was developed based on a program
behavior known as locality of references. Memory references are generated by the CPU
for either instruction or data access. These accesses tend to be clustered in certain
regions in time, space, and ordering.

In other words, most programs act in favor of a certain portion of their address
space at any time window. Hennessy and Patterson (1990) have pointed out a 90-10
rule which states that a typical program may spend 90% of its execution time on only
10% of the code such as the innermost loop of a nested looping operation.

There are three dimensions of the locality property: temporal, spatial, and sequen-
tial. During the lifetime of a software process, a number of pages are used dynamically.
The references to these pages vary from time to time, however, they follow certain access
patterns as illustrated in Fig. 4.19. These memory reference patterns are caused by the
following locality properties:

(1) Temporal locality — Recently referenced items (instructions or data) are likely to
be referenced again in the near future. This is often caused by special program
constructs such as iterative loops, process stacks, temporary variables, or subrou-
tines. Once a loop is entered or a subroutine is called, a small code segment will
be referenced repeatedly many times. Thus temporal locality tends to cluster
the access in the recently used areas.

(2) Spatial locality — This refers to the tendency for a process to access items whose
addresses are near one another. For example, operations on tables or arrays in-
volve accesses of a certain clustered area in the address space. Program segments,
such as routines and macros, tend to be stored in the same neighborhood of the
memory space.

(3) Sequential locality — In typical programs, the execution of instructions follows
a sequential order (or the program order) unless branch instructions create out-
of-order executions. The ratio of in-order execution to out-of-order execution is
roughly 5 to 1 in ordinary programs. Besides, the access of a large data array
also follows a sequential order.

Memory Design Implications The sequentiality in program behavior also con-
tributes to the spatial locality because sequentially coded instructions and array ele-
ments are often stored in adjacent locations. Each type of locality affects the design of

198 Processors and Memory Hierarchy

The efficiency of the address translation process affects the performance of the vir-
tual memory. Processor support is needed for precise interrupts and translator updates.
Virtual memory is more difficult to implement in a multiprocessor, where additional
problems such as coherence, protection, and consistency become much more involved.
Two virtual memory models are studied below.

Private Virtual Memory The first model uses a private virtual memory space
associated with each processor, as seen in the VAX/11 and in most UNIX systems
(Fig. 4.20a). Each private virtual space is divided into pages. Virtual pages from differ-
ent virtual spaces are mapped into the same physical memory shared by all processors.

The advantages of using private virtual memory include the use of a small processor
address space (32 bits), protection on each page or on a per-process basis, and the use
of private memory maps, which require no locking.

The shortcoming lies in the synonym problem, in which different virtual addresses
in different/same virtual spaces point to the same physical page. Another problem is
that the same virtual address in different virtual spaces may point to different pages in
the main memory.

Shared Virtual Memory This model combines all the virtual address spaces into a
single globally shared virtual space (Fig. 4.20b). Each processor is given a portion of the
shared virtual memory to declare their addresses. Different processors may use disjoint
spaces. Some areas of virtual space can be also shared by multiple processors.

Examples of machines using shared virtual memory include the IBM801, RT, RP3,
System 38, the HP Spectrum, the Stanford Dash, MIT Alewife, Tera, etc. We will
further study shared -virtual memory in Chapter 9. Until then, all virtual memory
systems discussed are assumed private unless otherwise specified.

The advantages in using shared virtual memory include the fact that all addresses
are unique. However, each processor must be allowed to generate addresses larger than
32 bits, such as 46 bits for a 64-Tbyte (2®-byte) address space. Synonyms are not
allowed in a globally shared virtual memory.

The page table must allow shared accesses. Therefore, mutval ezclusion (locking)
is needed to enforce protected access. Segmentation is built on top of the paging system
to confine each process to its own address space (segments). Global virtual memory
makes the address translation process even longer.

4.4.2 TLB, Paging, and Segmentation

Both the virtual memory and physical memory are partitioned into fixed-length
pages as illustrated in Fig. 4.18. The purpose of memory allocation is to allocate pages
of virtual memory to the page frames of the physical memory.

Address Translation Mechanisms The process demands the translation of virtual
addresses into physical addresses. Various schemes for virtual address translation are
summarized in Fig. 4.21a. The translation demands the use of transiation maps which
can be implemented in various ways.

4.4 Virtual Memory Technology 203

that address and, if it is found, uses the table index of the matching entry as the address
of the desired page frame. A hashing table is used to search through the inverted PT.
The size of an inverted PT is governed by the size of the physical space, while that
of traditional PTs is determined by the size of the virtual space. Because of limited
physical space, no multiple levels are needed for the inverted page table.

Example 4.8 Paging and segmentation in the Intel i486 processor

As with its predecessor in the 80x86 family, the i486 features both segmentation
and paging compatibilities. Protected mode increases the linear address from 4
Gbytes (2%? bytes) to 64 Thytes (2*® bytes) with four levels of protection. “The
maximal memory size in real mode is 1 Mbyte (22° bytes). Protected mode allows
the i486 to run all software from existing 8086, 80286, and 80386 processors. A
segment can have any length from 1 byte to 4 Gbytes, the maximal physical memory
gize.

A segment can start at any base address, and storage overlapping between
segments is allowed. The virtual address (Fig. 4.22a) has a 16-bit segment selector
to determine the base address of the linear address space to be used with the 1486

paging system.
The 32-bit offset specifies the internal address within a segment. The segment

descriptor is used to specify access rights and segment size besides selection of the
address of the first byte of the segment.

The paging feature is optional on the i486. It can be enabled or disabled by
software control. When paging is enabled, the virtual address is first translated
into a linear address and then into the physical address. When paging is disabled,
the linear address and physical address are identical. When a 4-Gbyte segment is
selected, the entire physical memory becomes one large segment, which means the
segmentation mechanism is essentially disabled.

In this sense, the i486 can be used with four different memory organizations, pure
paging, pure segmentation, segmented paging, or pure physical addressing without
paging and segmentation.

A 32-entry TLB (Fig 4.22b) is used to convert the linear address directly into
the physical address without resorting to the two-level paging scheme (Fig 4.22c).

The standard page size on the 1486 is 4 Kbytes = 2'? bytes. Four control registers
are used to select between regular paging and page fault handling.

The page table directory (4 Kbytes) allows 1024 page directory entries. Each
page table at the second level is 4 Kbytes and holds up to 1024 PTEs. The upper
20 linear address bits are compared to determine if there is a hit. The hit ratios of
the TLB and of the page tables depend on program behavior and the efficiency of
the update (page replacement) policies. A 98% hit ratio has been observed in TLB
operations in the past.

208 Processors and Memory Hierarchy

Different cache organizations (Section 5.1) may offer different flexibilities in imple-
menting some of the replacement algorithms. The cache memory is often associatively
searched, while the main memory is randomly addressed.

Due to the difference between page allocation in main memory and block alloca-
tion in the cache, the cache hit ratio and memory page hit ratio are affected by the
replacement policies differently. Cache traces are often needed to evaluate the cache
performance. These considerations will be further discussed in Chapter 5.

4.5 Bibliographic Notes and Exercises

Advanced microprocessors were surveyed in the book by [Tabak91]. A tutorial on
RISC computers was given by [Stallings90]. Superscalar and superpipelined machines
were characterized by Jouppi and Wall [Jouppi89]. [Johnson91] provided an excellent
book on superscalar processor design. The VLIW architecture was first developed by
[Fisher83].

The Berkeley RISC was reported by Patterson and Sequin in [Patterson82]. A
MIPS R2000 overview can be found in [Kane88|. The HP precision architecture has
been assessed in [Lee89]. Optimizing compilers for SPARC appears in [Muchnick88]. A
further description of the M68040 can be found in [Edenfield90).

A good source of information on the i860 can be found in [Margulis90]. The DEC
Alpha architecture is described in [DEC92]. The latest MIPS R4000 was reported
by Mirapuri, Woodacre, and Vasseghi [Miraouri92]. The IBM RS/6000 was discussed
in (IBM90]. The Hot-Chips Symposium Series [Hotchips91] usually present the latest
developments in high-performance processor chips.

The virtual memory models were based on the tutorial by Dubois and Briggs
[Dubois90c]. The book by [Hennessy90] and Patterson has treated the memory hierar-
chy design based on extensive program trace data. Distributed shared virtual memory
was surveyed in [Nitzberg91] and Lo.

The concept of a working set was introduced by [Denning68]. A linear program-
ming optimization of the memory hierarchy was reported in [Chow74]. [Crawford90]
explained the paging and segmentation schemes in the i486. Inverted paging was de-
scribed by [Chang88] and Mergen. [Cragon92b| has discussed memory systems for
pipeline processor design.

Exercises

Problem 4.1 Define the following basic terms related to modern processor technology:

(a) Processor design space. (f) Processor versus coprocessor.
(b) Instruction issue latency. (g) General-purpose registers.
(c¢) Instruction issue rate. (h) Addressing modes.

(d) Simple operation latency. (i) Unified versus split caches.

(e) Resource conflicts. (j) Hardwired versus microcoded control.

Chapter 5

Bus, Cache, and Shared Memory

This chapter describes the design and operational principles of bus, cache, and
shared-memory organization. Backplane bus systems are studied first, including the
latest Futurebus+ specifications. Cache addressing models and implementation schemes
are described. We study memory interleaving, allocation schemes, and the sequential
and weak consistency models for shared-memory systems. Other relaxed memory con-
sistency models are given in Chapter 9.

5.1 Backplane Bus Systems

The system bus of a computer system operates on a contention basis. Several active
devices such as processors may request use of the bus at the same time. However, only
one of them can be granted access at a time. The effective bandwidth available to each
processor is inversely proportional to the number of processors contending for the bus.

For this reason, most bus-based commercial multiprocessors are small in size. The
simplicity and low cost of a bus system have made it attractive in building small mul-
tiprocessors ranging from 4 to 16 processors based on today’s technology.

In this section, we specify system buses which are confined to a single backplane
chassis. We concentrate on logical specification instead of physical implementation.
Standard bus specifications should be botu technology-independent and architecture-
independent.

5.1.1 Backplane Bus Specification

A backplane bus interconnects processors, data storage, and peripheral devices in
a tightly coupled hardware configuration. The system bus must be designed to allow
communication between devices on the bus without disturbing the internal activities of
all the devices attached to the bus. Timing protocols must be.established to arbitrate
among multiple requests. Operational rules must be set to ensure orderly data transfers

on the bus.
Signal lines on the backplane are often functionally grouped into several buses as

213

218 Bus, Cache, and Shared Memory

(a) Synchronous bus timing with fixed-length clock signals for all devices

f

= va.iv
Data 2 y

k——— Cycle +——< Cycle 2————— Cycle 3

(b) Asynchronous bus timing using a four-edge handshaking (interlock-
ing) with variable-length signals for different-speed devices

Figure 5.3 Synchronous versus asynchronous bus timing protocols.

5.1.3 Arbitration, Transaction, and Interrupt

The process of selecting the next bus master is called arbitration. The duration of
a master’s control of the bus is called bus tenure. This arbitration process is designed
to restrict tenure of the bus to one master at a time. Competing requests must be
arbitrated on a fairness or priority basis.

Arbitration competition and bus transactions may take place concurrently on a
parallel bus with separate lines for both purposes.

Central Arbitration As illustrated in Fig. 5.4a, a central arbitration scheme uses a
central arbiter. Potential masters are daisy-chained in a cascade. A special signal line
is used to propagate a bus-grant signal level from the first master (at slot 1) to the last
master (at slot n).

Each potential master can send a bus request. However, all requests share the same
bus-request line. As shown in Fig. 5.4b, the bus-request signals the rise of the bus-grant
level, which in turn raises the bus-busy level.

A fixed priority is set in a daisy chain from left to right. Only when the devices on
the left do not request bus control can a device be granted bus tenure. When the bus
transaction is complete, the bus-busy level is lowered, which triggers the falling of the
bus grant signal and the subsequent rising of the bus-request signal.

The advantage of this arbitration scheme is its simplicity. Additional devices can

5.1 Backplane Bus Systems 223

(10) Direct support of snoopy cache-based multiprocessors with recursive protocols to
support large systems interconnected by multiple buses.

(11) Compatible message-passing protocols with multicomputer connections and spe-
cial application profiles and interface design guides provided.

Example 5.1 Signal lines in the proposed Futurebus+ standard

As illustrated in Fig. 5.6, the Futurebus+ consists of information, synchroniza-
tion, bus arbitration, and handshake lines that can match different system designs.
The 64-bit address lines are multiplexed with the lower-order 64-bit data lines.
Additional data lines can be added to form a data path up to 256 bits wide. The
tag lines are optional for extending the addressing/data modes.

The command lines carry command information from the master to one or more
slaves. The status lines are used by slaves to respond to the master’'s commands.
The capability lines are used to declare special bus transactions. Every byte of lines

-is protected by at least one parity-check line.

* 64 Address/data lines
* 64-192 Data lines

* 8 Tag lines

* 8 Status lines

« 3 Capability lines

* 6-34 Parity lines

* 3 Address handshake lines
* 3 Data handshake lines
« | Bus transfer control line

* § Arbitration bus lines

* 3 Arbitration synchronization lines
* 2 Arbitration condition lines

* Arbitration parity line

» 4 Central arbitration lines

« 5 Geographical address lines
* Reset line

Figure 5.6 The Futurebus+ organization. (Reprinted with permission from IEEE Stan-
dard 896.1-1991, copyright © 1991 by IEEE, Inc.)

5.2 Cache Memory Organizations 227

Virtual Address Caches When a cache is indexed or tagged with a virtual address
as shown in Fig. 5.9, it is called a virtual address cache. In this model, both cache and
MMU translation or validation are done in parallel. The physical address generated by
the MMU can be saved in tags for later write-back but is not used during the cache
lookup operations. The virtual address cache is motivated with its enhanced efficiency
to access the cache faster, overlapping with the MMU translation as exemplified below.

VA = Virtual address
PA = Physical address
I = lastructions
D = Data stream

OCache | D '2
1
e (K Byton) [+

(b) A split cache accessed by virtual address as in the Intel i860 processor

Figure 5.9 Virtual address models for unified and split caches. (Courtesy of Intel
Corporation, 1989)

Example 5.3 The virtual addressed split cache design in Intel i860

Figure 5.9b shows the virtual address design in the Intel i860 using split caches

for data and instructions. Instructions are 32 bits wide. Virtual addresses generated
by the integer unit (IU) are 32 bits wide, and so are the physical addresses generated

by the MMU. The data cache is 8 Kbytes with a block size of 32 bytes. A two-way,
set-associative cache organization (Section 5.2.3) is implemented with 128 sets in

the D-cache and 64 sets in the I-cache.
N

The Aliasing Problem The major problem associated with a virtual address cache
is aliasing, when different logically addressed data have the same index/tag in the cache.
Multiple processes may use the same range of virtual addresses. This aliasing problem
may create confusion if two or more processes access the same physical cache location.

232 Bus, Cache, and Shared Memory

sequentially using RAMs. Thus an associative memory (content-addressable memory,
CAM) is needed to achieve a parallel comparison with all tags simultaneously. This
demands a higher implementation cost for the cache. Therefore, a fully associative cache
has been implemented only in moderate size, such as those used in microprocessor-based
tomputer systems.

Figure 5.11b shows a four-way mapping example using a fully associative search.
The tag is 4 bits long because 16 possible cache blocks can be destined for the same block
frame. The major advantage of using full associativity is to allow the implementation of
a better block replacement policy with reduced block contention. The major drawback
lies in the expensive search process requiring a higher hardware cost.

5.2.3 Set-Associative and Sector Caches

Set-associative caches are the most popular cache designs built into commercial
computers. Sector mapping caches offer a design alternative to set-associative caches.
These two types of cache design are described below.

Set-Associative Cache This design offers a compromise between the two extreme
cache designs based on direct mapping and full associativity. If properly designed,
this cache may offer the best performance-cost ratio. Most high-performance computer
systems are based on this approach. The idea is illustrated in Fig. 5.12.

In a k-way associative cache, the m cache block frames are divided into v = m/k
sets, with k blocks per set. Each set is identified by a d-bit set number, where 2¢ = v.
The cache block tags are now reduced to s — d bits. In practice, the set size k, or
associativity, is chosen as 2, 4, 8, 16, or €4, depending on a tradeoff among block size
w, cache size m, and other performance/cost factors.

Fully associative mapping can be visualized as having a single set (i.e., v = 1) or
an m-way associativity. In a k-way associative search, the tag needs to be compared
only with the k tags within the identified set, as shown in Fig. 5.12a. Since k is rather
small in practice, the k-way associative search is much more economical than the full
associativity.

In general, a block B; can be mapped into any one of the available frames By in a
set S; defined below. The matched tag identifies the current block which resides in the
frame.

B; — By € S, if j(modulo v) =i (5.2)

Design Tradeoffs The set size (associativity) k and the number of sets v are inversely
related by

m=vxk (5.3)

For a fixed cache size there exists a tradeoff between the set size and the number of sets.
The advantages of the set-associative cache include the following:
First, the block replacement algorithm needs to consider only a few blocks in the
same set. Thus the replacement policy can be more economically implemented with
limited choices, as compared with the fully associative cache.

236 Bus, Cache, and Shared Memory

Model 85, there are 16 sectors, each having 16 blocks. Each block has 64 bytes,
giving a total of 1024 bytes in each sector and a total cache capacity of 16 Kbytes
using a LRU block replacement policy.

N

5.2.4 Cache Performance Issues

The performance of a cache design concerns two related aspects: the cycle count
and the hit ratio. The cycle count refers to the number of basic machine cycles needed
for cache access, update, and coherence control. The hit ratio determines how effectively
the cache can reduce the overall memory-access time. Tradeoffs do exist between these
two aspects. Key factors affecting cache speed and hit ratio are discussed below.

Program trace-driven simulation and analytical modeling are two complementary
approaches to studying cache performance. Both have to be applied together in order
to provide a credible performance assessment.

Simulation studies present snapshots of program behavior and cache responses but
they suffer from having a microscopic perspective.

Analytical models may deviate from reality under simplification. However, they
provide some macroscopic and intuitive insight into the underlying processes.

Agreement between results generated from the two approaches allows one to draw a
more credible conclusion. However, the generalization of any conclusion is limited by the
finite-sized address traces and by the assumptions about address trace patterns. Sim-
ulation results can be used to verify the theoretical results, and analytical formulation
can guide simulation experiments on a wider range of parameters.

Cycle Counts The cache speed is affected by the underl;'ing static or dynamic RAM
technology, the cache organization, and the cache hit ratios. The total cycle count should
be predicated with appropriate cache hit ratios. This will affect various cache design
decisions, as already seen in previous sections.

The cycle counts are not credible unless detailed simulation of all aspects of a
memory hierarchy is performed. The write-through or write-back policies also affect
the cycle count. Cache size, block size, set number, and associativity all affect the cycle
count as illustrated in Fig. 5.14.

The cycle count is directly related to the hit ratio, which decreases almost linearly
with increasing values of the above cache parameters. But the decreasing trend be-
comes flat and after a certain point turns into an increasing trend (the dashed line in
Fig. 5.14a). This is caused primarily by the effect of the block size on the hit ratio,
which will be discussed below.

Hit Ratios The cache hit ratio is affected by the cache size and by the block size
in different ways. These effects are illustrated in Figs. 5.14b and 5.14c, respectively.
Generally, the hit ratio increases with respect to increasing cache size (Fig. 5.14b).
When the cache size approaches infinity, a 100% hit ratio should be expected.
However, this will never happen because the cache size is always bounded by a limited
budget. The initial cache loading and changes in locality also prevent such an ideal

5.3 Shared-Memory Organizations 241

successive memory modules separated in every minor cycle 7.

Note that the pipelined access of the block of eight contiguous words is sandwiched
between other pipelined block accesses before and after the present block. Even though
the total block access time is 28, the effective access time of each word is reduced to 7
as the memory is contiguously accessed in a pipelined fashion.

Memory address Register (6 bils)

Word address

| 0 | 5 | | 6
|8 | 13] [14
| 16| 21 |
24 | 29 | [30
| 32 | | 38 |
| 40 | 45 | | 46
2 1 [
| 56 | 62

Memory Data Register

(a) Eight-way low-order interleaving (absolute address shown in each
memory word)

Wy

Wp 8 = Major cycle

Wi T = 6/m = minor cycle

Wy m = degree of interleaving

- -

(b) Pipelined access of eight consecutive words in a C-access memory

Figure 5.16 Multiway interleaved memory organization and the C-access timing
chart.

248 Bus, Cache, and Shared Memory

5.4 Sequential and Weak Consistency Models

This section studies shared-memory behavior in relation to program execution order
and memory-access order. The sequential consistency and weak consistency memory
models are characterized and their potential for improving performance is assessed. In
Chapter 9, we will introduce the processor consistency and release consistency models
for building scalable multiprocessor systems.

5.4.1 Atomicity and Event Ordering

The problem of memory inconsistency arises when the memory-access order differs
from the program execution order. As illustrated in Fig. 5.19a, a uniprocessor system
maps an SISD sequence into a similar execution sequence. Thus memory accesses (for
instructions and data) are consistent with the program execution order. This property
has been called sequential consistency (Lamport, 1979).

In a shared-memory multiprocessor, there are multiple instruction sequences in
different processors as shown in Fig. 5.19b. Different ways of interleaving the MIMD
instruction sequences into a global memory-access sequence lead to different shared
memory behaviors.

How these two sequences are made consistent distinguishes the memory behavior
in strong and weak models. The quality of a memory model is indicated by hard-
ware/software efficiency, simplicity, usefulness, and bandwidth performance.

Memory Consistency Issues The behavior of a shared-memory system as observed
by processors is called a memory model. Specification of the memory model answers
three fundamental questions: (1) What behavior should a programmer/compiler ex-
pect from a shared-memory multiprocessor? (2) How can a definition of the expected
behavior guarantee coverage of all contingencies? (3) How must processors and the
memory system behave to ensure consistent udherence to the expected behavior of the
multiprocessor?

In general, choosing a memory model involves making a compromise between a
strong model minimally restricting software and a weak model offering efficient im-
plementation. The use of partial order in specifying memory events gives a formal
description of special memory behavior.

Primitive memory operations for multiprocessors include load (read), store (write),
and one or more synchronization operations such as swap (atomic load-store) or con-
ditional store. For simplicity, we consider one representative synchronization operation
swap, besides the load and store operations.

Event Orderings On a multiprocessor, concurrent instruction streams {or threads)
executing on different processors are processes. Each process executes a code segment.
The order in which shared memory operations are performed by one process may be used
by other processes. Memory events correspond to shared-memory accesses. Consistency
models specify the order by which the events from one process should be observed by
other processes in the machine.

5.4 Sequential and Weak Consistency Models 253

accessed in real time over all loads and stores with respect to all processor pairs
and location pairs.

(3) If two operations appear in a particular program order, then they appear in the
same memory order.

(4) The swap operation is atomic with respect to other stores. No other store can
intervene between the load and store parts of a swap.

(5) All stores and swaps must eventually terminate.

Lamport’s definition sets the basic spirit of sequential consistency. The memory-
access constraints imposed by Dubois et al. are refined from Lamport’s definition with
respect to atomicity. The conditions on sequential consistency specified by Sindhu
et al. are further refined with respect to partial ordering relations. Implementation
requirements of these constraints are discussed below.

Implementation Considerations Figure 5.20 shows that the shared memory con-
sists of a single port that is able to service exactly one operation at a time, and a switch
that connects this memory to one of the processors for the duration of each memory
operation. The order in which the switch is thrown from one processor to another
determines the global order of memory-access operations.

The sequential consistency model implies total ordering of stores/loads at the in-
struction level. This should be transparent to all processors. In other words, sequential
consistency must hold for any processor in the system.

A conservative multiprocessor designer may prefer the sequential consistency model,
in which consistency is enforced by hardware on-the-fly. Memory accesses are atomic
and strongly ordered, and confusion can be avoided by having all processors/caches wait
sufficiently long for unexpected events.

Strong ordering of all shared-memory accesses in the sequential consistency model
preserves the program order in all processors. A sequentially consistent multiprocessor
cannot determine whether the system is a multitasking uniprocessor or a multiprocessor.
Interprocessor communication can be implemented with simple loads/stores, such as
Dekker’s algorithm for synchronized entry into a critical section by multiple processors.
Al! memory accesses must be globally performed in program order.

A processor cannot issue another access until the most recently shared writable
memory access by a processor has been globally performed. This may require the prop-
agation of all shared-memory accesses to all processors, which is rather time-consuming
and costly.

Most multiprocessors have implemented the sequential consistency model because
of its simplicity. However, the model may lead to rather poor memory performance
due to the imposed strong ordering of memory events. This is especially true when
the system becomes very large. Thus sequential consistency reduces the scalability of a
multiprocessor system.

5.4.3 Weak Consistency Models

The multiprocessor memory model may range anywhere from strong (or sequential)
consistency to various degrees of weak consistency. In this section, we describe the weak

258 Bus, Cache, and Shared Memory

Each processor is rated with 10 MIPS if a 100% cache hit ratio is assumed. On the
average, each instruction needs 0.2 memory access. The read access and write access
are assumed equally probable.

For a crude approximation, consider only the penalty caused by shared-memory
access and ignore all other overheads. The cache is targeted to maintain a hit ratio of
0.95. A cache access on a read-hit takes 20 ns; that on a write-hit takes 60 ns with a
write-back scheme, and with a write-through scheme it needs 400 ns.

When a cache block is to be replaced, the probability that it is dirty is estimated
as 0.1. An average block transfer time between the cache and shared memory via the
bus is 400 ns.

(a) Derive the effective memory-access times per instruction for the write-through and
write-back caches separately.

(b) Calculate the effective MIPS rate for each processor. Determine an upper bound
on the effective MIPS rate of the 16-processor system. Discuss why the upper
bound cannot be achieved by considering the memory penalty alone.

Problem 5.5 Explain the following terms associated with cache and memory archi-
tectures.

(a) Low-order memory interleaving.

(b) Physical address cache versus virtual address cache.
(c) Atomic versus nonatomic memory accesses.

(d) Memory bandwidth and fault tolerance.

Problem 5.6 Explain the following terms associated with cache design:

(a) Write-through versus write-back caches.
(b) Cacheable versus noncacheable data.
(c¢) Private caches versus shared caches.
(d) Cache flushing policies.

(e) Factors affecting cache hit ratios.

Problem 5.7 Consider the simultaneous execution of the three programs on the three
processors shown in Fig. 5.19c. Answer the following questions with reasoning or sup-
ported by computer simulation results:

(a) List the 90 execution interleaving orders of the six instructions {e, b, ¢, d, e, f} which
will preserve the individual program orders. The corresponding output patterns
(6-tuples) should be listed accordingly.

(b) Can all 6-tuple combinations be generated out of the 720 non-program-order in-
terleavings? Justify the answer with reasoning and examples.

(c) We have assumed atomic memory access in this example. Explain why the output
011001 is not possible in an atomic memory multiprocessor system if individual
program orders are preserved.

5.5 Bibliographic Notes and Exercises 263

Problem 5.19 Explain the following terms associated with memaory management:

(a) The role of a memory manager in an OS kernel.

(b) Preemptive versus nonpreemptive memory allocation policies.
(c) Swapping memory system and examples.

(d) Demand paging memory system and examples.

(e) Hybrid memory system and examples.

Problem 5.20 Compare the memory-access constraints in the following memory con-
sistency models:

(a) Determine the similarities and subtle differences among the conditions on sequen-
tial consistency imposed by Lamport (1979), by Dubois et al. (1986), and by Sindhu
et al. (1992), respectively. '

(b) Repeat question (a) between the DSB model and the TSO model for weak consis-
tency memory systems.

(c) A PSO (partial store order) model for weak consistency has been refined from the
TSO model. Study the PSO specification in the paper by Sindhu et al. (1992) and
compare the relative merits between the TSO and the PSO memory models.

6.1 Linear Pipeline Processors 269

t s
10 p=-
wara[
[3) .
4 L
2 -
1 >
1 2 4 8 16 32 64 128 n
No. of operations

(a) Speedup factor as a function of the number of operations (Eq. 6.5)

Performancd

Cost Ratio

(z No. of stages

(b) Optimal number of pipeline stages (Eqs. 6.6 and 6.7)

Figure 6.2 Speedup factors and the optimal number of pipeline stages for a linear
pipeline unit.

Let t be the total time required for a nonpipelined sequential program of a given
function. To execute the same program on a k-stage pipeline with an equal flow-through
delay ¢, one needs a clock period of p = t/k + d, where d is the latch delay. Thus, the
pipeline has a maximum throughput of f = 1/p = 1/(¢/k+d). The total pipeline cost is
roughly estimated by ¢+ kh, where ¢ covers the cost of all logic stages and h represents
the cost of each latch. A pipeline performance/cost ratio (PCR) has been defined by
Larson (1973):

__f _ 1
PCR= % = Wk v d)c + Fh)

Figure 6.2b plots the PCR as a function of k. The peak of the PCR curve corre-

(6.6)

274 Pipelining and Superscalar Techniques

by the number of latencies along the cycle. The latency cycle (1,8) thus has an average
latency of (1 4+ 8)/2 = 4.5. A constant cycle is a latency cycle which contains only one
latency value. Cycles (3) and (6) in Figs. 6.5b and 6.5c are both constant cycles. The
average latency of a constant cycle is simply the latency itself. In the next section, we
describe how to obtain these latency cycles systematically.

6.2.2 Collision-Free Scheduling

When scheduling events in a pipeline, the main objective is to obtain the shortest
average latency between initiations without causing collisions. In what follows, we
present a systematic method for achieving such collision-free scheduling.

We study below collision vectors, state diagrams, single cycles, greedy cycles, and
minimal average latency (MAL). These pipeline design theory was originally developed
by Davidson (1971) and his students.

Collision Vectors By examining the reservation table, one can distinguish the set of
permissible latencies from the set of forbidden latencies. For a reservation table with n
columns, the mazimum forbidden latency m < n — 1. The permissible latency p should
be as small as possible. The choice is made in the range 1 <p <m - 1.

A permissible latency of p = 1 corresponds to the ideal case. In theory, a latency
of 1 can always be achieved in a static pipeline which follows a linear (diagonal or
streamlined) reservation table as shown in Fig. 6.1c.

The combined set of permissible and forbidden latencies can be easily d.xsplayed by
a collision vector, which is an m-bit binary vector C = (C;,Cm-1 -+ C2Cy). The value
of C; = 1 if latency i causes a collision and C; = 0 if latency 1 is permissible. Note that
it is always true that C,, = 1, corresponding to the maximum forbidden latency.

For the two reservation tables in Fig. 6.3, the collision vector Cx = (1011010) is
obtained for function X, and Cy = (1010) for function Y. From Cx, we can immediately
tell that latencies 7,5, 4, and 2 are forbidden and latencies 6,3, and 1 are permissible.
Similarly, 4 and 2 are forbidden latencies and 3 and 1 are permissible latencies for
function Y.

State Diagrams From the above collision vector, one can construct a state diagram
specifying the permissible state transitions among successive initiations. The collision
vector, like C'y above, corresponds to the initial state of the pipeline at time 1 and
thus is called an initial collision vector. Let p be a permissible latency within the range
l1<p<m-1.

The next state of the pipeline at time ¢ + p is obtained with the assistance of an
m-bit right shift register as in Fig. 6.6a. The initial collision vector C is initially loaded
into the register. The register is then shifted to the right. Each 1-bit shift corresponds
to an increase in the latency by 1. When a 0 bit emerges from the right end after p
shifts, it means p is a permissible latency. Likewise, a 1 bit being shifted out means a
collision, and thus the corresponding latency should be forbidden.

Logical 0 enters from the left end of the shift register. The next state after p shifts
is thus obtained by bitwise-ORing the initial collision vector with the shifted register

6.2 Nonlinear Pipeline Processors 279

In total, the operation X, has been delayed one cycle from time 4 to time 5 and
the operation X, has been delayed two cycles from time 5 to time 7. All remaining
operations (marked as X in Fig. 6.8b) are unchanged. This new table leads to a
new collision vector (100010) and a modified state diagram in Fig. 6.8c.

This diagram displays a greedy cycle (1,3), resulting in a reduced MAL =
(143)/2 = 2. The delay insertion thus improves the pipeline performance, yielding
a lower bound for the MAL.

Pipeline Throughput This is essentially the initiation rate or the average number
of task initiations per clock cycle. If N tasks are initiated within n pipeline cycles, then
the initiation rate or pipeline throughput is measured as N/n. This rate is determined
primarily by the inverse of the MAL adapted. Therefore, the scheduling strategy does
affect the pipeline performance.

In general, the shorter the adapted MAL, the higher the throughput that can be
expected. The highest achievable throughput is one task initiation per cycle, when the
MAL equals 1 since 1 < MAL < the shortest latency of any greedy cycle. Unless the
MAL is reduced to 1, the pipeline throughput becomes a fraction.

Pipeline Efficiency Another important measure is pipeline efficiency. The per-
centage of time that each pipeline stage is used over a sufficiently long series of task
initiations is the stage utilization. The accumulated rate of all stage utilizations deter-
mines the pipeline efficiency.

Let us reexamine latency cycle (3) in Fig. 6.5b. Within each latency cycle of
three clock cycles, there are two pipeline stages, S; and S3, which are completely and
continuously utilized after time 6. The pipeline stage S, is used for two cycles and is
idle for one cycle.

Therefore, the entire pipeline can be considered 8/9 = 88.8% efficient for latency
cycle (3). On the other hand, the pipeline is only 14/27 = 51.8% efficient for latency
cycle (1, 8) and 8/16 = 50% efficient for latency cycle (6), as illustrated in Figs. 6.5a
and 6.5c, respectively. Note that none of the three stages is fully utilized with respect
to two initiation cycles.

The pipeline throughput and pipeline efficiency are related to each other. Higher
throughput results from a shorter latency cycle. Higher efficiency implies less idle time
for pipeline stages. The above example demonstrates that higher throughput also ac-
companies higher efficiency. Other examples may show a contrary conclusion. The
relationship between the two measures is a function of the reservation table and of the
initiation cycle adopted.

At least one stage of the pipeline should be fully (100%) utilized at the steady state
in any acceptable initiation cycle; otherwise, the pipeline capability has not been fully
explored. In such cases, the initiation cycle may not be optimal and another initiation
cycle should be examined for improvement.

284 Pipelining and Superscalar Techniques

it contains instructions sequentially ahead of the current instruction. This saves the
instruction feteh time from memory. Second, it recognizes when the target of a branch
falls within the loop boundary. In this case, unnecessary memory accesses can be avoided
if the target instruction is already in the loop buffer. The CDC 6600 and Cray 1 have
used loop buffers.

Multiple Functional Units Sometimes a certain pipeline stage becomes the bot-
tleneck. This stage corresponds to the row with the maximum number of checkmarks
in the reservation table. This bottleneck problem can be alleviated by using multiple
copies of the same stage simultaneously. This leads to the use of multiple execution
units in a pipelined processor design (Fig. 6.12).

Instruction from Memory

o DecoooandlsunUnm———-'-i :
e e a5]G!

saiors | 78| [As] [Rs] [ms] f Lo

Functional
Units FU FU FU |#**+| FU

:

Result Bus

Figure 6.12 A pipelined processor with multiple functional units and distributed
reservation stations supperted by tagging. (Courtesy of G. Sohi; reprinted
with permission from JEEE Transactions on Computers, March 1990)

Sohi (1990) used a model architecture for a pipelined scalar processor containing
multiple functional units (Fig. 6.12). In order to resolve data or resources dependences
among the successive instructions entering the pipeline, the reservation stations (RS) are
used with each functional unit. Operands can wait in the RS until its data dependences
have been resolved. Each RS is uniquely identified by a tag, which is monitored by a
tag unait.

6.3 Instruction Pipeline Design 289

Most of today’s pipelined computers use some form of static scheduling by the
compiler. The compiler-based software interlocking is cheaper to implement and flexible
to apply. However, in high-performance computers, we need special hardware support
to achieve dynamic instruction scheduling as explained below.

Tomasulo’s Algorithm This hardware dependence-resolution scheme was first im-
plemented with multiple floating-point units of the IBM 360/91 processor. The hard-
ware platform was abstracted in Fig. 6.12. For the Model 91 processor, three RSs are
used in a floating-point adder and two pairs in a floating-point multiplier. The scheme
resolves resource conflicts as well as data dependences using register tagging to allocate
or deallocate the source and destination registers.

An issued instruction whose operands are not available is forwarded to an RS
associated with the functional unit it will use. It waits until its data dependences
have been resolved and its operands become available. The dependence is resolved by
monitoring the result bus (called common data bus in Model 91). When all operands
for an instruction are available, it is dispatched to the functional unit for execution. All
working registers are tagged. If a source register is busy when an instruction reaches
the issue stage, the tag for the source register is forwarded to an RS. When the register
becomes available, the tag can signal the availability.

Example 6.6 Tomasulo’s algorithm for dynamic instruction scheduling

Tomasulo’s algorithm was applied to work with processors having a few floating-
point registers. In the case of Model 91, only four registers were available. Figure
6.16a shows a minimum-register machine code for computing X = Y 4+ Z and A
= B x C. The pipeline timing with Tomasulo’s algorithm appears in Fig. 6.16b.
Here, the total execution time is 13 cycles, counting from cycle 4 to cycle 15 by
ignoring the pipeline startup and draining times.

Memory is treated as a special functional unit. When an instruction has com-
pleted execution, the result (along with its tag) appears on the result bus. The
registers as well as the RSs monitor the result bus and update their contents (and
ready/busy bits) when a matching tag is found. Details of the algorithm can be
found in the original paper by Tomasulo (1967).

|

CDC Scoreboarding The CDC 6600 was an early high-performance computer that
used dynamic instruction scheduling hardware. Figure 6.17a shows a CDC 6600-like
processor, in which multiple functional units appeared as multiple execution pipelines.
Parallel units allow instructions to complete out of the original program order. The
processor had instruction buffers for each execution unit. Instructions are issued to
available functional units regardless of whether register input data were available.

The instruction’s control information would then wait in a buffer for its data to
be produced by other instructions. To control the correct routing of data between
execution units and registers, the CDC 6600 used a centralized control units known as

294 Pipelining and Superscalar Techniques

to use the entire history of the branch to predict the future choice. This is infeasible
to implement. Therefore, most dynamic prediction is determined with limited recent
history, as illustrated in Fig. 6.19.

\ AL AL J
Branch Branch Branch
instruction Prediction target
address Statistics address

T = Branch taken
N = Not-taken branch

NN = Last two branches not taken
T NT = Not branch taken and previous taken

TT = Both last two branch taken
@:D TN = Last branch taken and previous not taken

(b) A typical state diagram

Figure 6.19 Branch history buffer and a state transition diagram used in dynamic
branch prediction. (Courtesy of Lee and Smith, JEEE Computer, 1984)

Cragon (1992) has classified dynamic branch strategies into three major classes:
One class predicts the branch direction based upon information found at the decode
stage. The second class uses a cache to store target addresses at the stage the effective
address of the branch target is computed. The third scheme uses a cache to store target
instructions at the fetch stage. All dynamic predictions are adjusted dynamically as a
program is executed.

Dynamic prediction demands additional hardware to keep track of the past behavior
of the branch instructions at run time. The amount of history recorded should be small.

Otherwise, the prediction logic becomes too costly to implement.
Lee and Smith (1984) have shown the use of a branch target buffer (BTB) to

6.4 Arithmetic Pipeline Design 299

X =(-1)* x2°71923 » (1.m) (6.16)

Special rules are given in the standard to handle overflow or underflow condi-
tions. Interested readers may check the published IEEE standards for details.
"

Floating-Point Operations The four primitive arithmetic operations are defined
below for a pair of floating-point numbers represented by X = (m.,e:) and Y =
(my, ey). For clarity, we assume e, < e, and base r = 2.

X+Y = (myx2%"% 4+m,)xz (6.17)
X-Y = (my;x2%"% ~m,) xz (6.18)
XxY = (myxmy)x20te (6.19)
X+Y = (my+my) x 2% (6.20)

The above equations clearly identify the number of arithmetic operations involved
in each floating-point function. These operations can be divided into two halves:
One half is for exponent operations such as comparing their relative magnitudes or
adding/subtracting them; the other half is for mantissa operations, including four types
of fixed-point operations.

Floating-point units are ideal for pipelined implementation. The two halves of the
operations demand almost twice as much hardware as that required in a fixed-point
unit. Arithmetic shifting operations are needed for equalizing the two exponents before
their mantissas can be added or subtracted.

Shifting a binary fraction m to the right k places corresponds to the weighting m x
2-*% and shifting k places to the left corresponds to m x 2%. In addition, normalization
of a floating-point number also requires left shifts to be performed.

Elementary Functions Elementary functions include trigonometric, exponential,
logarithmic, and other transcendental functions. Truncated polynomials or power se-
ries can be used to evaluate the elementary functions, such as sinz, Inz, e*, coshz,
tan~!y, /7,2, etc.

Some CORDIC (coordinate rotation digital computer) algorithms have been de-
veloped to calculate trigonometric functions and to convert between binary and mixed
radix number systems. Interested readers may refer to the book by Hwang (1979) for
details of computer arithmetic functions and their hardware implementation.

It should be noted that computer arithmetic can be implemented by hardwired
random logic circuitry as well as by table lookup using ROMs or RAMs in memory.
Frequently used constants and special function values can be easily generated by table
lookup. Hashing can provide fast access to these tables.

6.4.2 Static Arithmetic Pipelines

Most of today’s arithmetic pipelines are designed to perform fixed functions. These
arithmetic/logic units (ALUs) perform fixed-point and floating-point operations sepa-

304 Pipelining and Superscalar Techniques

This arithmetic pipeline has three stages. The mantissa section and exponent
section are essentially two separate pipelines. The mantissa section can perform
floating-voint add or multiply operations, either single-precision (32 bits) or double-
precision (64 bits).

In the mantissa section, stage 1 receives input operands and returns with com-
putation results; 64-bit registers are used in this stage. Note that all three stages
are connected to two 64-bit data buses. Stage 2 contains the array multiplier
(64 x 8) which must be repeatedly used to carry out a long multiplication of the
two mantissas.

The 67-bit adder performs the addition/subtraction of two mantissas, the barrel
shifter is used for normalization. Stage 3 contains registers for holding results
before they are loaded into the register file in stage 1 for subsequent use by other
instructions.

On the exponent side, a 16-bit bus is used between stages. Stage 1 has an ex-
ponent adder for comparing the relative magnitude of two exponents. The result
of stage 1 is used to equalize the exponents before mantissa addition can be per-
formed. Therefore, a shift count (from the output of the exponent adder) is sent
to the barrel shifter for mantissa alignment.

After normalization of the final result (getting rid of leading zeros), the exponent
needs to be readjusted in stage 3 using another adder. The final value of the
resulting exponent is fed from the register in stage 3 to the register file in stage 1,

ready for subsequent usage.
n

Convergence Division Division can be carried out by repeated multiplications.
Mantissa division is carried out, by a convergence method. This convergence division
obtains the quotient Q@ = M/D of two normalized fractions 0.5 < M < D < 1 in two's
complement notation by performing two sequences of chain multiplications as follows:

Q_MxR,ngx---ka

Dx Ry xRy x---x Ry
where the successive multipliers
Ri=1+6"" =2-D% for i=1,2,....k and D=1~

The purpose is to choose R; such that the denominator D*) = D x R; x Ry %
-+ x Ry — 1 for a sufficient number of k iterations, and then the resulting numerator
Mx Ry xRyx: -+ x R — Q.

Note that the multiplier R; can be obtained by finding the two's complement of the
previous chain product D) = Dx Ry x --- x R;_y =1 — 4% because 2 — D(¥) = R,.
The reason why D'*) — 1 for large k is that

(6.22)

(1-8)1+8)(1+6)1+6Y - (1+67)
(1-8)1+6)(1+6)--(1+6%)
(1-6) fori=1,2,---,k (6.23)

D

6.5 Superscalar and Superpipeline Design 309

Ss

‘ R = .i.A".‘

R =f(AB) R=AxS

ga) Pipeline. stages and (b) Fixed-point multiplication (¢) Floating-point dot
interconnections product

Figure 6.27 The multiplication arithmetic pipeline of the TI Advanced Scientific
Computer and the interstage connections of two representative func-
tions. (Shaded stages are unutilized).

implementation technology.

Pipeline Design Parameters Some parameters used in designing the scalar base
machine and superscalar machines are summarized in Table 6.1 for four types of pipeline
processors to be studied below. All pipelines discussed are assumed to have k stages.

The machine pipeline cycle for the scalar base machine is assumed to be 1 time
unit, called the base cycle. We defined the instruction issue rate, issue latency, and
simple operation latency in Section 4.1.1. The instruction-level paratlelism (ILP) is the
maximum number of instructions that can be simultaneously executed in the pipeline.

For the base machine, all of these parameters have a value of 1. All machine types
are designed relative to the base machine. The ILP is needed to fully utilize a given
pipeline machine.

314 Pipelining and Superscalar Techniques

1;m (clock cycles)

Pipe 1, |,
Pipe 2, I,

(b) In-order issue and out-of-order completion in nine cycles

| 1 2 3 4 5 8 7 1 2 3
Pipe 1131, Td, [as [aa] s | Pipe 1113 |l Issue order
Pipe2, 1, 12 | G2 [my | M2 | M3 52 Pipe2f 1y | 1y | 12
Lookahead Window Ig | f3 | d3 | e, | sy i Lookahead m
Pipe 1 I m2 5 6
Pipe2 Iy 2 | 0o | ®2 85 | Pipe 1 lﬂﬂ lﬂ Completion order
Pipe2 Ipf 1 | 01] ay |32] 81 Pipo2 B ! | 'a | s |

(¢) Out-of-order issue and out-of-order completion in seven cycles
using an instruction lookahead window in the recoding process

Figure 6.30 Instruction issue and completion policies for a superscalar processor
with and without instruction lookahead support. (Timing charts corre-
spond to parallel execution of the program in Fig. 6.28)

instructions 12,14, and 16 in three consecutive cycles. Due to I1 — 12, I2 has to wait
one cycle to use the data loaded in by I1.

I3 is delayed one cycle for the same adder used by 12. 16 has to wait for the result
of I5 before it can enter the multiplier stages. In order to mainiain in-order completion,
I5 is forced to wait for two cycles to come out of pipeline 1. In total, nine cycles are
needed and five idle cycles (chaded boxes) are observed.

In Fig. 6.30b, out-of-order completion is allowed even if in-order issue is practiced.
The only difference hetween this out-of-order schedule and the in-order schedule is that
I5 is allowed to complete ahead of I3 and 14, which are totally independent of I5. The
total execution time does not improve. However, the pipeline utilization rate does.

Only three idle cycles were observed. Note that in Figs. 6.29a and 6.29b, we did

6.5 Superscalar and Superpipeline Design 319

ICACHE (8 KBytes)
IEE?T“:'E“"l TAG l DATA |
- _ Address Bus
(34 bits)
esox | [isox

Data Bus

| =
(128 bits)
Extemal Cache
——
Control
| ma I DATA |
. ;
EBOX = Inleger unit BiIU = Bus interface unit
FBOX = Floating-point unit IRF = integer register file
ABOX = Address unit FRF = Floating-point register file
1BOX = Central control DTB = Data-stream vanslavon buffer

Figure 6.32 The architecture of the DEC 21064-A microprocessor. (Courtesy of
Digital Equipment Corporation, 1992)

Unlike others, the Alpha architecture has thirty-two 64-bit integer registers and
thirty-two 64-bit floating-point registers. The integer pipeline has 7 stages, and
the floating-point pipeline has 10 stages in the initial Alpha design. All Alpha
instructions are 32 bits. The instructions interact with each other only by one
instruction writing into a register or memory and another one reading from the
same place.

The first Alpha implementation issues two instructions per cycle. It is expected
to increase the number of issues in later implementations. Pipeline timing hazards,
load delay slots, and branch delay slots are all minimized by hardware support.
The Alpha is designed to support fast multiprocessor interlocking and interrupts.

A privileged library of software has been developed to run full VMS and to
run OSF/1 using different versions of the software library that mirror many of
the VAX/OS and MIPS/OS features, respectively. This library makes Alpha an
attractive architecture for multiple operating systems. The processor is designed
to have a 300-MIPS peak and a 150-Mflops peak at 150 MHz.

|

324 Pipelining and Superscalar Techniques

purpose is to vield a new reservation table leading to an optimal latency equal to the
lower bound.

(a) Show the modified reservation table with five rows and seven colummns.
b) Draw the new state transition diagram for obtaining the optimal cycle.
(c¢) List all the simple cycles and greedy cycles from the state diagram.
(d) Prove that the new MAL equals the lower bound.
(e) What is the optimal throughput of this pipeline? Indicate the percentage of
throughput improvement compared with that obtained in part (d) of Problem 6.6.

Problem 6.8 Consider an adder pipeline with four stages as shown below. The
pipeline consists of input lines X and Y and output line Z. The pipeline has a register
R at its output where the temporary result can be stored and fed back to S1 at a later
point in time. The inputs X and Y are multiplexed with the outputs R and Z.

—— 7

MPX

St t—w S2 e S3 | S4 e R

(a) Assume the elements of the vector A are fed into the pipeline through input X,
one element per cycle. What is the minimum number of clock cycles required to
compute the sum of an N-element vector A: s = 2 7=1 A(I)? In the absence of an
operand, a value of 0 is input into the pipeline by default. Neglect the setup time
for the pipeline.

(b) Let 7 be the clock period of the pipelined adder. Consider an equivalent non-
pipelined adder with a flow-through delay of 4r. Find the actual speedup S;(64)
and the efficiency n4(64) of using the above pipeline adder for N = 64.

(c¢) Find the maximum speedup Sy(oc) and the efficiency n4(co) when N tends to
infinity.

(d) Find N,/;, the minimum vector length required to achieve half of the maximum
speedup.

Problem 6.9 Consider the following pipeline reservation table.,

2 3

1 4
S1 [X X |
S2 X
S3 X

Part 111

Parallel and Scalable
Architectures

Chapter 7
Multiprocessors and Multicomputers

Chapter 8
Multivector and SIMD Computers

Chapter 9

Scalable, Multithreaded, and Dataflow
Architectures

Summary

Part III consists of three chapters dealing with parallel, vector, and scalable
architectures for building high-performance computers. The multiprocessor system
interconnects studied include crossbar switches, multistage networks, hierarchical
buses, and multidimensional ring, mesh, and torus architectures. Three generations
of multicomputer developments are reviewed. Then we consider message-passing
mechanisms.

Vector supercomputers appear either as pipelined multiprocessors or as SIMD
data-parallel computers. We study the architectures of the Cray Y-MP, C-90,
Cray/MPP, NEC SX, Fujitsu VP-2000, VPP500, VAX 9000, Hitachi S-820, Star-
dent 3000, CM-2, MasPar MP-1, and CMS5 for concurrent scalar/vector processing.

Chapter 9 introduces scalable architectures for massively parallel processing
applications. These include both von Neumann, fine-grain, multithreaded, and
dataflow architectures. Various latency-hiding techniques are described, including
the principles of multithreading. Case studies include the Intel Paragon, Stanford
Dash, MIT Alewife, J-Machine and *T, Tera computer, KSR-1, Wisconsin Multic-
ube, USC/OMP, ETL EM({, etc.

329

7.1 Multiprocessor System Interconnects 335

l M1 |[T coe | Mm

Inter-cluster Bus

| -
. Second-
| C20 I I C21 I C22 | Level
Caches
L | | — ‘[J g'UUsS'Of
Elg [ciz] [cia][cu][cis] 17 f},’i,
Caches

[Po [Pt |{P2] [P3|{Pa|[Ps| [P6|{P7]||PB

Processors

Figure 7.3 A hierarchical cache/bus architecture for designing a scalable multi-
processor. (Courtesy of Wilson; reprinted from Proc. of Annual Int. Symp. on
Computer Archstecture, 1987)

The upper-level caches form another level of shared memory between each cluster
and the main memory modules connected to the intercluster bus. Most memory requests
should be satisfied at the lower-level caches. Intercluster cache coherence is controlled
among the second-level caches and the resulting effects are passed to the lower level.

Example 7.1 Encore’s Ultramax multiprocessor architecture

The Ultramax has a two-level hierarchical-bus architecture as depicted in Fig. 7.4.
The Ultramax architecture is very similar to that characterized by Wilson, except
that the global Nanobus is used only for intercluster communications.

The shared memories are distributed to all clusters instead of being connected
to the intercluster bus. The cluster caches form the second-level caches and perform
the same filtering and cache coherence control for remote accesses as in Wilson's
scheme. After an access request reaches the top bus, it is routed down to the cluster
memory that matches it with the reference address.

The idea of using bridges between multiprocessor clusters is to allow transactions
initiated on a local bus to be completed on a remote bus. As exemplified in Fig. 7.5,
multiple Futurebuses+ are used to build a very large system consisting of three multi-
processor clusters.

Bridges are used to interface these clusters. The main functions of a bridge include
communication protocol conversion, interrupt handling in split transactions, and serving
as cache and memory agents. Besides bridging between multiprocessor clusters built
around Futurebus+, the standard also provides bridge specifications for the VME bus
(IEEE P1014.2) and Multibus II (IEEE P1296.2). These will allow Futurebus+ to be
compatible with other bus architectures.

340 Multiprocessors and Multicomputers

Multiport Memory Because building a crossbar network into a large system is cost-
prohibitive, many mainframe multiprocessors use a multiport memory organization.
The idea is to move all crosspoint arbii ation and switching functions associated with
each memory module into the memory controller.

Thus the memory module becomes more expensive due to the added access ports
and associated logic as demonstrated in Fig. 7.7a. The circles in the diagram represent
n switches tied to n input ports of a memory module. Only one of n processor requests
will be honored at a time.

(a) n-port memory modules used

]

SURE

)

(b) Memory ports prioritized or privileged in each module by numbers

Figure 7.7 Multiport memory organizations for multiprocessor systems. (Courtesy
of P. H. Enslow, ACM Computing Surveys, March 1977)

The multiport memory organization is a compromise solution between a low-cost,
low-performance bus system and a high-cost, high-bandwidth crossbar system. The
contention bus is time-shared by all processors and device modules attached. The
multiport memory must resolve conflicts among processors.

This memory structure becomes expensive when m and n become very large. A

7.1 Multiprocessor System Interconnects 345

In total, sixteen 8 x 8 crossbar switches are used in Fig. 7.10a and 16 x8+8x8 = 192
are used in Fig. 7.10b. Larger Butterfly networks can be modularly constructed using
more stages. Note that no broadcast connections are allowed in a Butterfly network,
making these networks a restricted subclass of Omega networks.

The Hot-Spot Problem When the network traffic is nonuniform, a hot spot may
appear corresponding to a certain memory module being excessively accessed by many
processors at the same time. For example, a semaphore variable being used as a syn-
chronization barrier may become a hot spot since it is shared by many processors.

Hot spots may degrade the network performance significantly. In the NYU Ultra-
computer and the IBM RP3 multiprocessor, a combining mechanism has been added
to the Omega network. The purpose was to combine multiple requests heading for the
same destination at switch points where conflicts are taking place.

An atomic read-modify-write primitive Fetch&Add(z,e), has been developed to
perform parallel memory updates using the combining network.

Fectch& Add This atomic memory operation is effective in implementing an N-way
synchronization with a complexity independent of N. In a Fetch&Add(z, e¢) operation,
z is an integer variable in shared memory and e is an integer increment. When a single
processor executes this operation, the semantics is

Fetch&Add(z, e)
{temp ~ =z
r « temp+e; (7.1)
return temp}

When N processes attempt to Fetch&Add(z, e) the same memory word simultane-
ously, the memory is updated only once following a serialization principle. The sum of
the N increments, €, + €2 + <+ - + ey, i8 produced in any arbitrary serialization of the
N requests.

 This sum is added to the memory word z, resulting in a new value z+e, +ex+-- -+
en. The values returned to the /V requests are all unique, depending on the serialization
order followed. The net result is similar to a sequential execution of N Fetch&Adds but
is performed in one indivisible operation. Two simultaneous requests are combined in
a switch as illustrated in Fig. 7.11.

One of the following operations will be performed if processor P; executes Ans; «
Fetch&Add(x,e;) and P; executes Ans; «~ Fetch&Add(x,e;) simultaneously on the
shared variable z. If the request from P, is executed ahead of that from P, the following
values are returned:

Ansl — I
Ans, ~ z+e¢ (7.2)

If the execution order is reversed, the following values are returned:

350 Muiltiprocessors and Multicomputers

Memory (Output)
(Write-back)

(a) I/O operations bypassing the cache

P1 |°P1 P2 | |OP2 Legends:

P, (processor 1)
I0OP; (O Processor i)

Gy Ca C, (Cache i)
Bus

Shared Memory I

(b) A possible solution

Figure 7.13 Cache inconsistency after an I/O operation and a possible solution.
(Adapted from Dubois, Scheurich, and Briggs, 1988)

transactions. If a bus transaction threatens the consistent state of a locally cached
object, the cache controller can take appropriate actions to invalidate the local copy.
Protocols using this mechanism to ensure coherence are called snoopy protocols because
each cache snoops on the transactions of other caches.

On the other hand, scalable multiprocessor systems interconnect processors using
short point-to-point wires in direct or multistage networks. Unlike the situation in
buses, the bandwidth of these networks increases as more processors are added to the
system. However, such networks do not have a convenient snooping mechanism and
do not provide an efficient broadcast capability. In such systems, the cache coherence
problem can be solved using some variant of directory schemes.

In general, a cache coherence protocol consists of the set of possible states in the
local caches, the state in the shared memory, and the state transitions caused by the
messages transported through the interconnection network to keep memory coherent.
In what follows, we first describe the snoopy protocols and then the directory-based
protocols. These protocols rely on software, hardware, or a combination of both for
implementation. Cache coherence can also be enforced in the TLB or assisted by the

7.2 Cache Coherence and Synchronization Mechanisms 355

Cache Events and Actions The memory-access and invalidation commands trigger
the following events and actions:

e Read-miss: When a processor wants to read a block that is not in the cache, a
read-miss occurs. A bus-read operation will be initiated. If no dirty copy exists,
then main memory has a consistent copy and supplies a copy to the requesting
cache. If a dirty copy does exist in a remote cache, that cache will inhibit the
main memory and send a copy to the requesting cache. In all cases, the cache
copy will enter the valid state after a read-miss.

e Write-hit: If the copy is in the dirty or reserved state, the write can be carried
out locally and the new state is dirty. If the new state is valid, a write-invalidate
command is broadcast to all caches, invalidating their copies. The shared memory
is written through, and the resulting state is reserved after this first write.

o Write-miss: When a processor fails to write in a local cache, the copy must come
either from the main memory or from a remote cache with a dirty block. This
is accomplished by sending a read-invalidate command which will invalidate all
cache copies. The local copy is thus updated and ends up in a dirty state.

e Read-hit: Read-hits can always be performed in a local cache without causing a
state transition or using the snoopy bus for invalidation.

e Block Replacement: If a copy is dirty, it has to be written back to main memory
by block replacement. If the copy is clean (i.e., in either the valid, reserved, or
invalid state), no replacement will take place.

Goodman's write-once protocol demands special bus lines to inhibit the main mem-
ory when the memory copy is invalid, and a bus-read operation is needed after a read-
miss. Most standard buses cannot support this inhibition operation.

The IEEE Futurebus+ proposed to include this special bus provision. Using a
write-through policy after the first write and using a write-back policy in all additional
writes will eliminate unnecessary invalidations.

Snoopy cache protocols are popular in bus-based multiprocessors because of their
simplicity of implementation. The write-invalidate policies have been implemented on
the Sequent Symmetry multiprocessor and on the Alliant FX multiprocessor.

Besides the DEC Firefly multiprocessor, the Xerox Palo Alto Research Center has
implemented another write-update protocol for its Dragon multiprocessor workstation.
The Dragon protocol avoids updating memory until replacement, in order to improve
the efficiency of intercache transfers.

The Futurebus+ Protocol The Futurebus+ parallel protocols support both con-
nected and split transactions. Generally speaking, connected transactions are cheaper
and easier to implement on a single bus segment. Split transactions are more com-
plex and expensive but provide greater concurrency in building large hierarchical-bus
multiprocessors. This section explains the paralle]l arbitration mechanism and cache co-
herence developed for Futurebus+--based multiprocessors. The Futurebus+ is well suited
to shared-memory multiprocessors. The types of bus transactions are tuned to drive the
state of various cache modules to conform with almost any cache coherence protocol. A
unified cache model, called MESI, has been developed to maintain cache consistency in

360 Multiprocessors and Multicomputers

X:c.L...ooo.o‘ x: see Data

Cache Cache Cache
aee X: x: [Data L.. x: (Do ‘

. ® @&

(c) The chained directory

Figure 7.19 Three types of cache directory protocols. (Courtesy of Chaiken et al.,
IEEE Computer, June 1990)

7.2 Cache Coherence and Synchronization Mechanisms 365

barrier counter, the synchronization point has been reached. No processor can execute
beyond the barrier until the synchronization process is complete.

Wired Barrier Synchronization A wired-NOR logic is shown in Fig. 7.20 for im-
plementing a barrier mechanism for fast synchronization. Each processor uses a ded-
icated control vector X = (X, X;,...,Xm) and accesses a common monitor vector
Y =(W,Ys,..,Yy,) in shared memory, where m corresponds to the barrier lines used.

Xgoo X YooV XgooXp Yyoo¥p XgooXoo YooYy X+ Xm Yq:-Yp
Processor 1 Processor 2 Processor 3 Processor 4

(a) Barrier lines and interface logic

Step 1: Forking (use of one barrier line)
Processor 1 Processor2 Processor3d Processor 4

Line
x 1 i (1 (1
Y £ C [

[0

2: Process 1 and Process 3 reach the synchronization point
C i 9 (1

U C (0 9

Process 1 Process 2 Process 3 Process 4
Step 3: All processes reach the synchronization point

x [o g C
v [Gl [Gl

Process 1 Process 2 Process 3 Process 4

R

(b) Synchronization steps

Figure 7.20 The synchronization of four independent processes on four proces-
sors using one wired-NOR barrier line. (Adapted from Hwang and Shang,
Proc. Int. Conf. Parallel Processing, 1991)

The number of barrier lines needed for synchronization depends on the multipro-

370 Multiprocessors and Multicomputers

Table 7.1 Three Generations of Multicomputer Development

Generation | First | Second | Third
Years 1983-87 | 1988-92 | 1993-97
Typical node
MIPS 1 10 100
Mflops scalar 0.1 2 40
Mflops vector 10 40 200
Memory (Mbytes) 0.5 4 32
Typical system
N (nodes) 64 256 1024
MIPS 64 2560 100K
Mflops scalar 6.4 512 40K
Mflops vector 640 10K 200K
Memory (Mbytes) 32 LK 32K
Communication latency
(100-byte message)
Neighbor (microseconds) 2000 5 0.5
Nonlocal (microseconds) 6000 5 0.5

(Modified from Athas and Seitz, “Multicomputers: Message-Passing Con-
current Computers”, IEEE Computer, August 1988).

from medium- to fine-grain multicomputers using a globally shared virtual memory.

The Second Generation These are the multicomputers which are still in use at
present. A major improvement of the second generation includes the use of better
processors, such as the 1386 in the iPSC/2 and the 1860 in the iPSC/860 and in the
Delta. The nCUBE/2 implements 64 custom-designed VLSI processors on a single PC
board. The memory per node has also increased to 10 times that of the first generation.

Most importantly, hardware-supported routing, such as wormhole routing, reduces
the communication latency significantly from 6000 us to less than 5 us. In fact, the
latency for remote and local communications has become the same, independent of the
number of hops between any two nodes.

The architecture of a typical second-generation multicomputer is shown in Fig. 7.23.
This corresponds to a 16-node mesh-connected architecture. Mesh routing chips (MRCs)
are used to establish the four-neighbor mesh network. All the mesh communication
channels and MRCs are built on a backplane.

Each node is implemented on a PC board plugged into the backplane at the proper
MRC position. All I/O devices, graphics, and the host are connected to the periphery
(boundary) of the mesh. The Intel Delta system has such a mesh architecture.

Another representative system is the nCUBE/2 which implements a hypercube
with up to 8192 nodes with a total of 512 Gbytes of distributed memory. Note that
some parameters in Table 7.1 have been updated from the conservative estimates made
by Atlas and Seitz in 1988.

374 Multiprocessors and Multicomputers

Figure 7.25 Node architecture of the Paragon multicomputer.

Figure 7.28 The structure of a mesh-connected router with four pairs of I/O chan-
nels connected to neighboring routers.

8.1 Vector Processing Principles 405

V;Register V, Register V, Register Vi Register V; Register
L
e .
¢ .

s)

Functiona! Unit Functional Unit
(a) Vector-vector instruction (b) Vector-scalar instruction
{vector Load) '
r Memory path V; Register

Memory path
(Vector Store)

(c) Vector-memory instructions

Figure 8.1 Vector instruction types in Cray-like computers.

(M) as defined below:

fai: M=V Vector load (8.4)
fs: VM Vector store (8.5)
(4) Vector reduction instructions — These correspond to the following mappings:
fo : Vi — s (8.6)
fr:VixV, = s (8.7)

Examples of fg include finding the marimum, minimum, sum, and mean
value of all elements in a vector. A good example of f7 is the dot product, which
performs s = 3., a; x b; from two vectors A = (a;) and B = (b,).

(5) Gather and scatter instructions — These instructions use two vector registers to
gather or to scatter vector elements randomly throughout the memory, corre-
sponding to the following mappings:

fs: M=V xV, Gather (8.8)

412 Multivector and SIMD Computers

to eight processors in a single system using a 6-ns clock rate and 256 Mbytes of shared
memory.

The Cray Y-MP C-90 was introduced in 1990 to offer an integrated system with
16 processors using a 4.2-ns clock. We will study models Y-MP 816 and C-90 in detail
in the next section.

Another product line is the Cray 2S introduced in 1985. The system allows up
to four processors with 2 Gbytes of shared memory and a 4.1-ns superpipelined clock.
A major contribution of the Cray 2 was to switch from the batch processing COS to
multiuser UNIX System V on a supercomputer. This led to the UNICOS operating
system, derived from the UNIX/V and Berkeley 4.3 BSD, currently in use in most Cray
supercomputers.

The Cyber/ETA Series Control Data Corporation (CDC) introduced its first su-
percomputer, the STAR-100, in 1973. Cyber 205 was the successor produced in 1982.
The Cyber 205 runs at a 20-ns clock rate, using up to four vector pipelines in a unipro-
cessor configuration.

Different from the register-to-register architecture used in Cray and other super-
computers, the Cyber 205 and its successor, the ETA 10, have memory-to-memory
architecture with longer vector instructions containing memory addresses.

The largest ETA 10 consists of 8 CPUs sharing memory and 18 I/O processors.
The peak performance of the ETA 10 was targeted for 10 Gflops. Both the Cyber and
the ETA Series are no longer in production but are still in use at several supercomputer
centers.

Japanese Supercomputers NEC produced the SX-X Series with a claimed peak
performance of 22 Gflops in 1991. Fujitsu produced the VP-2000 Series with a 5-Gflops
peak performance at the same time. These two machines use 2.9- and 3.2-ns clocks,
respectively.

Shared communication registers and reconfigurable vector registers are special fea-
tures in these machines. Hitachi offers the 820 Series providing a 3-Gflops peak per-
formance. Japanese supercomputers are strong in high-speed hardware and interactive
vectorizing compilers.

The NEC SX-X 44 NEC claims that this machine is the fastest vector supercom-
puter (22 Gflops peak) ever built up to 1992. The architecture is shown in Fig. 8.5. One
of the major contributions to this performance is the use of a 2.9-ns clock cycle based
on VLSI and high-density packaging.

There are four arithmetic processors communicating through either the shared reg-
isters or via the shared memory of 2 Gbytes. There are four sets of vector pipelines
per processor, each set consisting of two add/shift and two multiply/logical pipelines.
Therefore, 64-way parallelism is observed with four processors, similar to that in the
C-90.

Besides the vector unit, a high-speed scalar unit employs RISC architecture with
128 scalar registers. Instruction reordering is supported to exploit higher parallelism.
The main memory is 1024-way interleaved. The extended memory of up to 16 Gbytes

8.2 Multivector Multiprocessors 419

8.2.2 Cray Y-MP, C-90, and MPP

We study below the architectures of the Cray Research Y-MP, C-90, and recently
announced MPP. Besides architectural features, we examine the op rating systems,
languages/compilers, and target performance of these machines.

Table 8.3 Architectural Characteristics of Three Current Supercomputers

Machine Cray Y-MP NEC Fujitsu
Characteristics C90/16256 SX-X Series VP-2000 Series
Number of 16 CPUs 4 arithmetic 1 for VP2600/10, 2
Processors Processors for VP2400/40
Machine cycle 4.2 ns 2.9 ns 3.2 ns
time
Max. memory 256M words (2 2 Gbytes, 1024-way 1 or 3 Gbytes of

Gbytes). interleaving. SRAM.
Optional SSD 512M, 1024M, or 16 Gbytes with 2.75 32 Gbytes of
memory 2048M words (16 Gbytes/s transfer extended memory.
Gbytes). rate.
Processor Two vector pipes and | Four sets of vector Two load/store pipes
architecture: two functional units pipelines and 5 functional

vector pipelines,
functional and

per CPU, delivering
64 vector results per

per processor, each
set consists of two

pipes per vector unit,
1 or 2 vector units, 2

scalar units clock period. adder/shift and two scalar units can be
multiply/logical attached to each
pipelines. A separate | vector unit.
scalar pipeline.

Operating system | UNICOS derived Super-UX based on UXP/M and

from UNIX/V and
BSD.

UNIX System V and
4.3 BSD.

“_

MSP/EX enhanced
for vector processing. |

Front.ends IBM, CDC, DEC, Built-in control IBM-compatible
Univac, Apollo, processor and 4 [/O | hosts.
Honeywell. Processors.
Vectorizing Fortran 77, C, CF77 | Fortran 77/SX, Fortran 77 EX/VP,
languages / 5.0, Cray C release Vectorizer/ XS, C/VP compiler with
compilers 3.0 Analyzer/SX. interactive
vectorizer.
Peak performance | 16 Gflops, 22 Gflops, 1| Gbyte/s | 5 Gflops, 2 Gbyte/s
and I/0 13.6 Gbytes/s. per I/O processor. with 256 channels.
bandwidth

The Cray Y-MP 816 A schematic block diagram of the Y-MP 8 is shown in Fig. 8.9.
The system can be co to have one, two, four, and eight processors. The eight
CPUs of the Y-MP share the central memory, the I/O section, the interprocessor com-
munication section, and the real-time clock.

436 Multivector and SIMD Computers

Do 10 I=1, N
Load R1, X(I)
Load R2, Y(I)
Multiply R1, S (8.13)
Add R2, Rl
Store Y(I), R2

10 Continue

where X(I) and Y(I), I = 1, 2, ..., N, are two source vectors originally residing
in the memory. After the computation, the resulting vector is stored back to the
memory. S is an immediate constant supplied to the multiply instruction.

After vectorization, the above scalar SAXPY code is converted to a sequence of
five vector instructions:

M(x:x+N-1) — V1 Vector load
My:y+N~-1) — V2 Vector load
SxVl - Vi1 Vector multiply (8.14)
V24Vl —= V2 Vector add
V2 — M(y:y+N-=1) Vector store

The same vector notation used in Eq. 4.1 is applied here, where x and y are the
starting memory addresses of the X and Y vectors, respectively; V1 and V2 are
two N-element vector registers in the vector processor.

The vector code in Eq. 8.14 can be expressed as a CVF as follows, using Fortran
90 notation:

Y(1:N)=SxX(1:N)+Y(1:N) (8.15)

For simplicity, we write the above expression for a CVF as follows:
Y(I) = S x X(I) + Y(I) (8.16)

where the index I implies that all vector operations involve N elements.
|

Compound Vector Functions Table 8.6 lists a number of example CVF's involving
one-dimensional vectors indexed by I. The same concept can be generalized to multidi-
mensional vectors with multiple indexes. For simplicity, we discuss only CVF's defined
over one-dimensional vectors. Typical operations appearing in these CVF's include load,
store, multiply, divide, logical, and shifting vector operations. We use “slash” to repre-
sent the divide operations. All vector operations are defined on a component-wise basis
unless otherwise specified.

The purpose of studying CVFs is to explore opportunities for concurrent processing
of linked vector operations. The numbers of available vector registers and functional
pipelines impose some limitations on how many CVFs can be executed simultaneously.

8.4 SIMD Computer Organizations 447

8.4.1 Implementation Models

Two SIMD computer models are described below based on the memory distribution
and addressing scheme used. Most SIMD computers use a single contrel unit and
distributed memories, except for a few that use associative meinories.

The instruction set of an SIMD computer is decoded by the array control unit. The
processing elements (PEs) in the SIMD array are passive ALUs executing instructions
broadcast from the control unit. All PEs must operate in lockstep, synchronized by the
same array controller.

Distributed-Memory Model Spatial parallelism is exploited among the PEs in an
SIMD computer. A distributed-memory SIMD computer consists of an array of PEs
which are controlled by the same array control unit, as shown in Fig. 8.22a. Program
and data are loaded into the control memory through the host computer.

An instruction is sent to the control unit for decoding. If it is a scalar or program
control operation, it will be directly executed by a scalar processor attached to the
control unit. If the decoded instruction is a vector operation, it will be broadcast to all
the PEs for parallel execution.

Partitioned data sets are distributed to all the local memories attached to the PEs
through a vector data bus. The PEs are interconnected by a data-routing network
which performs inter-PE data communications such as shifting, permutation, and other
routing operations. The data-routing network is under program control through the
control unit. The PEs are synchronized in hardware by the control unit.

In other words, the same instruction is executed by all the PEs in the same cycle.
However, masking logic is provided to enable or disable any PE from participation in
a given instruction cycle. The Illiac IV was such an SIMD machine consisting of 64
PEs with local memories interconnected by an 8 x 8 mesh with wraparound connections
(Fig. 2.18b).

Almost all SIMD machines built today are based on the distributed-memory model.
Various SIMD machines differ mainly in the data-routing network chosen for inter-PE
communications. The four-neighbor mesh architecture has been the most popular choice
in the past. Besides [lliac IV, the Goodyear MPP and AMT DAP610 were also imple-
mented with the two-dimensional mesh. Variations from the mesh are the hypercube
embedded in a mesh implemented in the CM-2, and the X-Net plus a multistage crossbar
router implemented in the MasPar MP-1.

Shared-Memory Model In Fig. 8.22b, we show a variation of the SIMD computer
using shared memory among the PEs. An alignment network is used as the inter-PE
memory communication network. Again this network is controlled by the control unit.

The Burroughs Scientific Processor (BSP) has adopted this architecture, with n =
16 PEs updating m = 17 shared-memory modules through a 16 x 17 alignment network.
It should be noted that the value m is often chosen to be relatively prime with respect
to n, so that parallel memory access can be achieved through skewing without conflicts.

The alignment network must be properly set to avoid access conflicts. Most SIMD
computers are built with distributed memories. Some SIMD computers use bit-slice PEs,

8.5 The Connection Machine CM-5 457

implemented by the 1.3 Gbytes/s global router network.

The disk array provides up to 17.3 Gbytes of formatted capacity with a 9-Mbytes/s
sustained disk I/O rate. The parallel disk array is a necessity to support data-parallel
computation and provide file system transparency and multilevel fault tolerance.

8.5 The Connection Machine CM-5

The grand challenge applicationswill drive the development of present and future
MPP systems to achieve the 3T performance goals. The Connection Machine Model
CM-5 is the latest effort of Thinking Machines Corporation toward this end. We describe
below the innovations surrounding the CM-5 architectural development, its building
blocks, and the application paradigms.

8.5.1 A Synchronized MIMD Machine

The CM-2 and its predecessors were criticized for having a rigid SIMD architecture,
limiting general-purpose applications. The CM-5 designers liberated themselves by
choosing a universal architecture, which combines the advantages of both SIMD and
MIMD machines.

Traditionally, supercomputer programmers were forced to choose between MIMD
and SIMD computers. An MIMD machine is good at independent branching but bad
at synchronization and communication. On the contrary, an SIMD machine is good at
synchronization and communication but poor at branching. The CM-5 was designed
with a synchronized MIMD structure to support both styles of parallel computation.

The Building Blocks The CM-5 architecture is shown in Fig. 8.27. The machine
contains from 32 to 16,384 processing nodes, each of which can have a 32-MHz SPARC
processor, 32-Mbytes of memory, and a 128-Mflops vector processing unit capable of
performing 64-bit floating-point and integer operations.

Instead of using a single sequencer (as in the CM-2), the system uses a number of
control processors, which are Sun Microsystems workstation computers. The number
of control processors, varying with different configurations, ranges from one to several
tens. Each control processor is configured with memory and disk based on the needs.

Input and output are provided via high-bandwidth /0 interfaces to graphics de-
vices, mass secondary storage such as a data vault, and high-performance networks.
Additional low-speed I/O is provided by Ethernet connections to the control proces-
sors. The largest configuration is expected to occupy a space of 30 m x 30 m, and is
shooting for a peak performance over 1 Tflops.

The Network Functions The building blocks are interconnected by three networks:
a datae network, a control network, and a diagnostic network. The data network provides
high-performance, paint-to-point data communications between the processing nodes.
The control network provides cooperative operations, including broadcast, synchroniza-
tion, and scans, as well as system management functions.

The diagnostic network allows “back-door” access to all system hardware to test

470 Multivector and SIMD Computers

(f) Sparse matrix and masking instruction.

Problem 8.3 Explain the following membry organizations for vector accesses:

(a) S-access memory organization.
(b) C-access memory organization.
(¢) C/S-access memory organization.

Problem 8.4 Distinguish among the following vector processing machines in terms
of architecture, performance range, and cost-effectiveness:

(a) Full-scale vector supercomputers.
(b) High-end mainframes or near-supercomputers.
(¢) Minisupercomputers or supercomputing workstations.

Problem 8.5 Explain the following terms associated with compound vector process-
Ing:

(a) Compound vector functions.

(b) Vector loops and pipeline chaining.

(c) Systolic program graphs.

(d) Pipeline network or pipenets.

Problem 8.6 Aﬁ;vaer the following questions related to the architecture and opera-
tions of the Connection Machine CM-2:

(a) Describe the processing node architecture, including the processor, memory, floating-
point unit, and network interface.

(b) Describe the hypercube router and the NEWS grid and explain their uses.
(c) Explain the scanning and spread mechanisms and their applications on the CM-2.

(d) Explain the concepts of broadcasting, global combining, and virtual processors in
the use of the CM-2.

Problem 8.7 Answer the following questions about the MasPar MP-1:

(a) Explain the X-Net mesh interconnect (the PE array) built into the MP-1.

(b) Explain how the multistage crossbar router works for global communication be-
tween all PEs.

(c) Explain the computing granularity on PEs and how fast I1/O is performed on the
MP-1.

Problem 8.8 Answer the following questions about the Connection Machine CM-
5:

9.1 Latency-Hiding Techniques

479

as umnits of coherence. This tends to increase false-sharing activity.

Table 9.1 Representative Shared-Virtual-Memory Systems (Excerpts from Nitzberg
and Lo, JEEE Comput., August 1991)

System Implementation Coherence Special mechanics
and and Semantics and for Performance
Developer Structure Protocols and Synchronization

Stanford Dash Mesh-connected Release memory Relaxed coherence,
(Lenoski, network of Silicon consistency with prefetching, and
Laudon, Graphics 4D /340 write-invalidate use queued locks
Gharachorloo, workstations with protocol. for synchronization.
Gupta, and added hardware for
Hennessy, coherent caches
1988-). and prefetching.
Yale Linda Software- Coherence varies Linda can be
(Carriero and implemented with environment; | implemented for
Gelernter, system based on hashing is used in many languages
1982-). the concepts of associative search; | and machines using

tuple space with no mutable data. C-Linda or

access functions to Fortran-Linda

achieve coherence interfaces.

via virtual memory

management.

" CMU Plus A hardware Uses processor Pages for sharing,
(Bisiani and implementation consistency, words for
Ravishankar, using MC 88000, nondemand coherence, complex
1988-). Caltech mesh, and | write-update synchronization

Plus kernel. coherence, delayed | instructions.
operations.
Princeton Shiva | Software-based Sequential Uses data structure
(Li and system for Intel consistency, compaction,
Schaefer, 1988). | iPSC/2 with a write-invalidate messages for
Shiva/native protocol, 4-Kbyte semaphores and
operating system. page swapping. signal. wait,

distributed memory
as backing store.

Scalability issues of SVM architectures include determining the sizes of data struc-
tures for maintaining memory coherence and how to take advantage of the fast data
transmission among distributed memories in order to implement large SVM address
spaces. Data structure compaction and page swapping can simplify the design of a
large SVM address space without using disks as backing stores. A number of alterna-
tive choices are given in Li (1992).

556 Parallel Models, Languages, and Compilers

Compiler Support To support data-parallel programming, the array language ex-
pressions and their optimizing compilers must be embedded in familiar standards such
as Fortran 77, Fortran 90, and C. The idea is to unify the program execution model, fa-
cilitate precise control of massively parallel hardware, and enable incremental migration
to data-parallel execution. |

Compiler-optimized control of SIMD machine hardware allows the programmer to
drive the PE array transparently. The compiler must separate the program into scalar
and parallel components and integrate with the UNIX environment.

The compiler technology must allow array extensions to optimize data placement,
minimize data movement, and virtualize the dimensions of the PE array. The compiler
generates data-parallel machine code to perform operations on arrays.

Array sectioning allows a programmer to reference a section or a region of a multi-
dimensional array. Array sections are designated by specifying a start index, a bound,
and a stride. Vector-valued subscripts are often used to construct arrays from arbitrary
permutations of another array. These expressions are vectors that map the desired el-
ements into the target array. They facilitate the implementation of gather and scatter
operations on a vector of indices.

SIMD programs can be recompiled for MIMD architecture. The idea is to develop
a source-to-source precompiler to convert, for example, from Connection Machine C*
programs to C programs running on an nCUBE message-passing multicomputer in
SPMD mode.

In fact, SPMD programs are a special class of SIMD programs which emphasize
medium-grain parallelism and synchronization at the subprogram level rather than at
the instruction level. In this sense, the data-parallel programming model applies to both
synchronous SIMD and loosely coupled MIMD computers. Program conversion between
different machine architectures is very much needed to broaden software portability.

10.1.4 Object-Oriented Model

If one considers special language features and their implications, additional models
for parallel programming can be introduced. An object-oriented programming model is
characterized below.

In this model, objects are dynamically created and manipulated. Processing is
performed by sending and receiving messages among objects. Concurrent programming
models are built up from low-level objects such as processes, queues, and semaphores
into high-level objects like monitors and program modules.

Concurrent OQOOP The popularity of object-oriented programming (OOP) is attributed
to three application demands: First, there is increased use of inweracting processes by
individual users, such as the use of multiple X windows. Second, workstation networks
have become a cost-effective mechanism for resource sharing and distributed problem
solving. Third, multiprocessor technology has advanced to the point of providing su-
percomputing power at a fraction of the traditional cost.

As a matter of fact, program abstraction leads to program modularity and software
reusability as is often found in OOP. Other areas that have encouraged the growth of

618 Parallel Program Development and Environments

W - Linda, DIIND. Strand-88
FORCE, SISAL, Hyperasking
Software
| Teol Type Basic
—ge SPISCES-2, SCHEDULE

CODE/ROPE, POKER
MONMACS, OLYMPUS

. L"'"",," PIE, MIMDizer,

rated PAT, Myrias
Er.:rgomm Al
Waell ’
» FAUST, Express,

TOPSYS

Figure 11.1 Software tool types for parallel programming. (Courtesy of Chang and
Smith, 1990)

Limited integration provides tools for parallel debugging, performance monitoring,
or program visualization beyond the capability of the basic environments listed. Well-
developed environments provide intensive tools for debugging programs, interaction
of textual/graphical representations of a parallel program, visualization support for
performance monitoring, program visualization, parallel I/O, parallel graphics, etc.

The classification of a particular tool will likely change with time. A pure language
might become an integrated environment for parallel programming someday when a
complete set of tools is added to it. For example, C-Linda and Fortran-Linda were
developed to help C and Fortran programmers write parallel programs using the tuple
spaces in Linda.

Environment Features In designing a parallel programming language, one often
faces a dilemma involving compatibility, expressiveness, ease of use, efficiency, and porta-
bility. Parallel languages are developed either by introducing new languages such as
Linda and Occam or by extending existing sequential languages such as Fortran 90, C¥,
and Concurrent Pascal.

A new parallel programming language has the advantage of using high-level par-
allel concepts or constructs for parallelism instead of using imperative (algorithmic)
languages which might have a sequential nature or exhibit the von Neumann bottleneck
and therefore are inherently sequential. New languages are usually difficult to market
for acceptance in a short time period because they are often incompatible with existing
sequential languages.

Most parallel computer designers choose the language extension approach to solv-
ing the compatibility problem. High-level parallel constructs were added to Fortran, C,
Pascal, and Lisp to make them suitable for use on parallel computers. Special optimiz-

634 Parallel Program Development and Environments

11.3 Shared-Variable Program Structures

We describe below the use of spin locks, suspend locks, binary and counting
semaphores, and monitors for shared-variable programming. These mechanisms can
be used to implement various synchronization methods among concurrent processes.
Shared-variable constructs are also used in OS kernel development for protected access
of certain kernel areas.

11.3.1 Locks for Protected Access

Lock and unlock mechanisms are described below using shared variables among
multiple processes. Binary locks are used globally among multiple processes. Spin locks
are based on a time-slot concept. Dekker’s locks are based on using distributed requests
jointly with a spin lock. Special multiprocessor instructions are needed to implement
these locking mechanisms.

Spin Locks The entrance and exit of a CS can be controlled by a binary spin lock
mechanism in which the gate is protected by a single binary variable z, which is shared
by all processes attempting to enter the CS.

Example 11.2 Definition of a binary spin lock

The gate variable z is initially set to 0, corresponding to the open status. Each
process P, is allowed to test the value of zr until it becomes 0. Then it can enter
the CS. The gate must be closed by setting z = 1 after entering.

Shared var x: (0,1) /The spin lock/
x:=0 /The CS is open initially/
Process Pi for all i
Repeat
f /Spinning with busy wait/
Untilx =0
x:=1 /Close gate after entry/
: /The critical section/
x:=0 /Open gate after done and exit/

After the CS is completed, the gate is reopened. A busy-wait protocol is used
in spin locks. Precautions must be exercised to prevent simultaneous entries into
the CS by multiple processes.

u

Example 11.3 Definition of a generalized spin lock with n possible values

One way to guarantee mutually exclusive entry is to use a generalized spin lock
with n processes as defined below. The gate variable z is allowed to assume n

656 Parallel Program Development and Environments

Performance Tuning One technique for tuning the performance is to use double-
buffer messages in a manager-worker decomposition. The idea is to send a worker two
pieces of work the first time. As soon as the worker is finished working on the first
piece, another piece is readily available.

Once the communication /computation issues have been well balanced, the results
from the first piece of work are returned to the manager who can send over another piece
of work before the worker finishes the second piece. There is always one job waiting in
the worker’s queue, and thus workers are kept busy all the time.

A potential problem with the manager-worker approach is that the manager may
become the bottleneck. According to Intel iPSC experience, up to 50 workers managed
by a single manager do not create a serious bottleneck problem as long as a good
communication/computation ratio can be maintained.

Clearly, for a multicomputer consisting of thousands of processors in the future,
the manager bottleneck problem will become more serious. One can always consider a
hierarchy of managers.

Another possible solution is to use floating managers or multitasking processors,
which can execute both a worker process or a manager process on the same processor.
These options must be carefully experimented with before they can be adopted in re
applications. ‘

11.5.3 Heterogeneous Processing

In this section, we learn how to combine object-oriented programming with message-
passing techniques for distributed computing applications. We first characterize objects
in relation to parallelism. Then we illustrate the object decomposition concept using an
air traffic control simulation example.

Finally, we present the concept of layered parallelism using a seismic monitoring
example which involves all the decomposition techniques we have learned to solve very
large-sca'c problems.

Objects and Parallelism The object-oriented approach to parallel programming
offers a formal basis for decomposing the data structures and threads of control in user
programs. In what follows, we define objects and reveal the relationship between objects
and parallel processing.

The idea of objects comes from data abstraction, in order to hide low-level details
from programmers for large-scale problems, such as in archive data/knowledge process-
ing. An object encompasses a set of logically related data and a set of procedures which
operate on the object’s data, as illustrated by the example in Fig. 11.11a.

The example shows that temporary storage in the form of a stack can be treated
as an object consisting of a last-in-first-out queue of data which can be pushed down
or popped up in its management. It should be noted that an object type (class) is
conceptually different from instances of the object type.

Those instances, called objects, are the ones used in program execution. Only the
object’s procedures have access to the object’s data. A programmer can be freed from
knowing the detailed implementation of the objects.

Index

Accetta, M., 687, 695, 698, 712
Acosta, R. D., 322
Active Memory Technology (AMT)
DAPG600 Series, 33, 83, 368, 555
DAP610, 32, 44, 121, 447, 448
Actor model, 557
Actus, 661
Ada, 13, 646, 657
Adaptive routing, 375, 382, 384, 387, 392,
394, 401
Address arithmetic unit (AAU), 507, 512
Address translation cache (ATC), 167, 169
Address-only transfer, 221
Addressing mode, 162-164, 166, 167, 208,
209
Advanced Micro Device (AMD) 29000, 170,
171, 315
Adve, S. V., 256, 257
Agarwal, A, 23, 44, 141, 142, 149, 500, 539
Agha, G., 557, 558, 612
Aho, A., 149
Ahuja, S., 661
Aiken, H., 4
Alewife, 23, 44, 475, 494, 501, 538, 539
Algebraic optimization, 581, 583
Algol, 5
Algorithm, 7, 33, 34
CRCW, 37
deterministic, 34
EREW, 37
nondeterministic, 34
nonpolynomial, 34
NP-complete, 315
parallel, 7, 8, 32, 34, 35, 38, 49
polynomial-complexity, 34
Allan, S. J., 612
ALLCACHE, 522, 523
Allen, J. R., 567, 612
Allen, M., 322

739

Alliant Computer Systems Corporation
FX, 355
FX Fortran compiler, 560, 567, 61¢
FX /2800, 347
FX/2800-200, 115
FX/80, 23, 589

Almasi, G. S., 46

ALU dependence, 54

Alverson, R., 44, 539

Amdahl Corporation

470/V6, 234
470/V7, 234

470V/8, 280
Amdahl’s law, 105, 111, 112, 124, 129-134,

136, 149, 151

Amdahl, G., 131, 149

Ametek 2010, 371, 394

Ametek S/14, 368

Analytical modeling, 23€

Anaratone, M., 84, 96

Anderson, D. W., 322

Andrews, G. R., 612

Antidependence, 52, 289, 312, 315

APAL, 33

Apollo workstation, 476

Arbiter, 215

Arbitration competition, 218

Archibald, J., 257

Architecture-independent language, 9

Architecture-neutral distribution format (ANDF),
702

Arden, B. W., 96

Ardent Computer Corporation, 432

Arithmetic and logic unit (ALU), 161, 167,
174, 177, 281, 299, 318, 507

Arithmetic mean, 108

Array processing language, 555

Array processor, 120, 555

Artificial intelligence (Al), 7, 13, 46, 157,

744

C-90, 422-424
CFT, 60
CFT compiler, 567
Cray 1, 29, 44, 316, 410, 411, 438, 471
Cray 1S, 410, 411
Cray 2, 412, 417, 421, 620
Cray 285, 412
MPP, 5, 6, 44, 423-424
T3D, 423, 424
X-MP, 5, 6, 411, 438, 439, 469, 471,
591, 620, 630, 632, 633
Y-MP, 29, 30, 44, 95, 115, 143, 145,
162, 347, 406, 411, 412, 417, 419,
421, 422, 424, 440, 469, 472, 505,
617, 621, 628, 630, 633, 661
Cray, S. 410
Critical section (CS), 548, 549, 629, 634~
637, 640, 641, 661, 662
Crossbar switch network, 76, 78, 101, 89,
94-96, 336, 339, 340, 347, 380,
395, 421, 429, 432, 455, 486, 534
Crossing dependence, 577
Crosspoint switch, 338, 339, 395
Cube-connected cycle (CCC), 26, 85-86,
89, 96, 100
Culler, D. E., 494, 534, 539
Cybenko, G., 143
Cycle scheduling, 594
Cycle time, 14, 15
Cycles per instruction (CPI), 14-17, 47, 48,

115, 150, 152, 157-160, 163, 164,
167, 170, 177, 180, 182, 209
Cypress
CY7C157, 171
CY7C601, 170-172
CY7C602, 170-172
CY7C604, 170, 171

DADO, 83

Daisy chain, 218, 219

Dally, W. J., 19, 43, 87, 88, 96, 103, 394,
507, 511, 514, 539

Dash, 23, 42, 49, 475, 476, 478, 480-482,
489, 494, 501, 516-521, 538, 539

Data dependence, 51-53, 57, 268, 280-282,
285, 288, 290, 291, 297, 305, 306,
310, 312, 313, 322, 564, 568, 570,
579, 588, 592, 626

Data Diffusion Machine (DDM), 23

INDEX

Data parallelism 120
Data pollution point, 357
Data structure, 7, 8, 14, 72, 76, 187, 629,
643, 644, 648, 649, 652, 654, 656
dynamic, 649
shared, 625, 657
static, 648, 649
Data token, 71, 72
Data transfer bus (DTB), 214, 215, 221
Data-driven, 70, 71, 74-76
Data-parallel programming model, 554-556,
612, 623
Data-routing function, 76-78
Database management, 7, 13, 26, 117, 118,
120
Dataflow architecture, 534, 539
Dataflow computer, 70-72, 75, 475, 531-
534, 536, 540, 559, 617
dynamic, 45, 533, 540
static, 45, 533, 540
Dataflow graph, 72, 74, 531-534, 559, 560
Dataflow language, 559, 561
Dataflow multithreading, 491
Davis, E. W., 455, 469
Davison, E. S., 274, 277, 322
Deadlock, 222, 375, 379-382, 388, 391, 392,
548, 626, 638-640, 663, 664
buffer, 375, 380, 399
channel, 375, 380, 399
static prevention, 640
Deadlock avoidance, 26, 375, 387, 401, 549,
640
dynamic, 640
Deadlock recovery, 640
Deadlock-free allocation, 640
Debit credit benchmark, 118
Degree of chaining, 439, 441, 442
Degree of parallelism (DOP), 291
Degree of superscalar processor, 159, 178,
180, 210
DeGroot, D., 46, 612
Dekel, E., 149
Dekker'’s protocol, 635-637, 662
Delay insertion, 279
Delay slot, 292, 295-297, 312, 319
Delayed branch, 292, 295-297, 312
Delta network, 337, 393, 398
Demand-driven, 70, 71, 74-76

INDEX

Instruction execution rate, 106, 111, 115,
150, 151
Instruction fetch, 280, 281, 283, 310, 311,
325
Instruction format, 162, 163, 174, 209
Instruction issue, 57, 265, 311, 312, 315-
317, 321-323
Instruction issue rate, 159, 208, 309, 317,
321
Instruction issue latency, 159, 160, 208, 309
Instruction lookahead, 6
Instruction prefetching, 265, 280, 281, 283,
284
Instruction reordering, 412, 583, 585
Instruction set, 579, 598
Instruction window, 181
Instruction write-back, 280, 284, 325
Instruction-level parallelism, 120
Instruction-set architecture (ISA), 15, 162,
209, 507, 622
Integer unit (1U), 54, 172, 179, 180, 227
Integrated circuit, 4
large-scale integration (LSI), 4
medium-scale integration (MSI), 4, 5§
small-scale integration (SSI), 4, &
very large-scale integration (VLSI), 4,
6, 157, 163, 412, 506, 507, 525
Intel Corporation
8086/8088, 162, 167, 203
8008, 167
8080, 167
8085, 167
8087, 162
80186, 167
80286, 162, 167, 203, 368
80287, 162
80387, 162
i386, 24, 162, 167, 203
i486, 24, 158, 162, 165, 167, 168, 174,
203, 208-210, 225
1586, 164, 167, 177, 210
i860, 26, 27, 158, 170, 171, 174, 175,
208, 210, 227, 234, 347, 370, 373,
621, 622
i860XP, 372
1960, 57, 297
iPSC, 84, 620, 645647, 656, 661, 685,
701
iPSC-VX compiler, 567

749

iPSC/1, 25, 84, 368, 369, 372, 505,
506, 684, 685
iPSC/2, 84, 370, 372, 478, 479, 684,
685
iPSC /860, 370, 372, 373, 617, 620, 621,
661, 685
iWarp, 84, 96, 394
NX/2, 667, 685
Paragon, 5, 6, 25, 26, 43, 83, 85, 121,
143, 367, 369, 372, 373, 394, 501,
686
Paragon XP/S, 621, 661
Touchstone Delta, 114, 115, 121, 143,
370, 621, 686
Inter-PE communication, 71, 77
Interactive compiler optimization, 427
Interactive scheduling, 693
Interconnection network, 75-95, 476, 482,
518, 519, 525, 527
direct, 75
dynamic, 75, 76, 89-95
indirect, 75
performance. 80
static, 75-76, 80-88
Interdomain socket, 695
Internal data forwarding, 265, 280, 282, 283,
286, 287, 291, 292, 305
Interprocess communication (IPC), 547-549,
668, 683, 686-688, 694697, 702,
703, 711, 712
Interprocessor communication latency, 21,
33, 124
Interprocessor-memory network (IPMN), 331
Interrupt, 215, 218, 221, 228, 335, 364, 373
interprocessor, 364
priority, 221
Interrupt handler, 215, 221
Interrupt mechanism, 221
Interrupt message, 648
Interrupter, 215, 221
Interstage connection (ISC), 91
Invalidation-based cache coherence proto-
col, 518, 520
Isoefficiency, 126
Isoefficiency function, 149
Iteration space, 568, 575, 577, 601, 603,
605, 607-608, 610
IVY, 476, 478

754

e

24, 41, 76-78, 89, 91-93, 96,

01, 331, 336, 358, 393, 418, 447,
454

Multitasked clustering, 701

Multitasking, 254, 426, 545, 549, 562, 591,
621, 628-633, 656, 668-671, 678,
683, 709

Multithreaded architecture, 75, 148, 475,
491, 498, 500, 516, 531, 537-539,
550

Multithreaded kernel, 667, 672, 677, 678,
680-682, 712, 714

Multithreaded MPP, 491, 536

Multithreaded multitasking, 678, 686-688

Multithreaded processor, 49, 494, 596

Multithreaded server, 709

Multithreading, 3, 44, 475, 491-500, 514,
525, 530, 534, 538, 550, 562, 671,
678, 680, 682, 690, 701, 709, 713

Multiway shuffle, 91

Multiple-context processor, 491, 494, 496,
539

Mutual exclusion, 198, 548, 549, 551, 552,
555

[o—

N-queens problem, 654
Nanobus, 222, 334, 335, 393
Nassimi, D., 149
National Semiconductor
NS32532, 167
NCUBE Corporation
3200, 614
6400, 394
nCUBE/10, 368
nCUBE/2, 26, 43, 115, 120, 370
Near-supercomputer, 24, 429

NEC, 143, 318
SX series, 30, 410, 412, 441, 469, 472
SX-3, 115

Network control strategy, 332
centralized, 332

distributed, 332
Netw ork diameter, 77, 80, 82-86, 89
Network flow control strategy, 26
Network interface unit, 538
Network latency, 80, 87, 89
Network partitioning, 391
Network Queueing System (NQS), 621
Network server, 696

INDEX

Network throughput, 87-88

Network UNIX host, 683
Network-connected system, 348

New Japanese national computer project

(NIPT), 536

NeXT Computer, 686, 688, 691, 694, 701,
713

Ni, L. M., 13, 46, 105, 107, 129, 134, 137,
149, 394, 401

Nickolls, J. R., 469

Nicolau, A., 149, 613

Nikhil, R. S., 45, 492-494, 532, 534, 536,
537, 539, 540

Nitzberg, B., 208, 478, 479, 489, 539

No-remote-memory-access (NORMA) model,
24, 48, 690, 714

Node degree, 77, 82-86, 89

Node duplication, 67

Node name, 64

Node splitting, 588

Node-addressed model, 683, 714

Noncacheable data, 363

Nonuniform-memory-access (NUMA) model,
19, 22-24, 42, 46, 48, 331, 368,
476, 690, 701, 714

NP-class problem, 34

NP-complete problem, 34, 569

NP-hard problem, 67

NuBus, 222, 393

Numerical computing, 7

Nussbaum, D, 141, 142, 149

Object decomposition, 644, 656, 657, 664
Object-oriented model, 683, 686, 688, 695,
712, 714
Object-oriented programming (OOP), 514,
556, 557, 643, 656, 657
Occam, 646, 647, 661
Oldehoeft, R., 612
Omega network, 86, 91, 96, 101-103, 142,
143, 153, 336, 337, 341-343, 345,
347, 393, 398, 399, 486, 534
Open Software Foundation OSF/1, 545, 621,
622, 667, 686, 701-703, 708, 712
Operand fetch, 280, 281, 308, 325
Operating system
Cray operating system (COS), 411, 412
UNICOS, 412, 419
ULTRIX, 430

INDEX

Seitz, C. L., 19, 39, 43, 46, 368-370, 394,
514, 515, 539, 661, 713
Self-service protocol, 626
Semaphore, 345, 364, 545, 551, 556, 561,
628, 637, 663
binary, 549, 637-640, 661-663
counting, 549, 551, 634, 638, 640
Semaphored kernel, 682
Sender-synchronized protocol, 364
Sequent Computer Systems
Balance 21000, 701
Symmetry, 355
Symmetry S81, 24, 90, 95
Symmetry series, 118, 431
Sequentijal bottleneck, 112, 130, 131
Sequential buffer, 283
Sequential computer, 9, 17
Sequential consistency (SC), 248, 251-256,
258, 479, 487-489, 523, 551
Sequential environment, 17
Sequin, C., 208
Serial complexity, 34
Serial fraction, 112
Serialization principle, 345
Serially reusable code, 629
Server synchronization, 627, 628
Session control, 705
Session leader, 705
Set-associative mapping, see Cache
Sevcik, K., 96
Shadow object, 698, 700
Shang, S., 359, 365, 366, 394
Shapiro, E., 612
Shar, L. E., 277, 322, 323
Shared distributed memory, 122, 136, 149
Shared memory, 6, 18-24, 27, 35, 37, 213,
228, 238, 248, 253, 258, 262, 331,
335, 341, 345, 348, 349, 351, 353-
355, 365, 368, 395, 399
Shared variable, 11, 13, 19, 345, 348, 398,
548, 549, 551, 559, 561
Shared virtual memory (SVM), 6, 148, 370,
372, 476, 671, 686, 711
Shared-memory multiprocessor, see Multi-
processor
Shared-variable communication, 548
Shared-variable programming model, 547~
551
Sharing list, 483-486

759

Sheperdson, J. C., 35, 46

Shih, Y. L., 394

Shimada, T., 45

Shiva, 478, 479

Side-effect dependence, 626

Siegel, H. J., 31, 46, 96

Siewiorek, D. P., 469

Silicon Graphics, Inc.

4-D, 226, 479, 517

Simple cycle, 276, 324, 325, 327

Simple operation latency, 159, 165, 166,
178, 208, 309, 317, 321

Sindhu, P. S., 248-256

Single floating master, 674

Single index variable (SIV), 571, 574-576,
578

Single instruction stream over multiple data
streams (SIMD), 11, 27, 30-33,
37, 43, 48, 59, 63, 77, 80, 91, 120~
122, 143, 183, 186, 368, 399, 403,
446-457, 505, 539, 547, 554556,
561, 614, 617, 625

Single instruction stream over single data
stream (SISD), 11, 49

Single master kernel, 672

Single program over multiple data streams
(SPMD), 62, 63, 120, 368, 399,
504, 524, 539, 541, 554, 556, 562,
614, 649

Single-assignment language, 559

Single-error correction/double-error detec-
tion (SECDED), 421

Single-stage network, 336, 338

SISAL, 559, 612

Slave processor, 162

Sleep-wait protocol, see Wait protocol

Slotted token ring, 500

Small computer systems interface (SCSI),
334, 393

Smith, A. J., 238, 256

Smith, B., 713

Smith, B. J., 44, 516, 525, 539

Smith, B. T., 661

Smith, J. E., 281, 289-291, 322, 415, 469

Snir, M, 36, 46

Snoopy bus, 351-355

Snoopy cache-coherence protocol, 351, 3556-
358, 396, 482, 519

Soft atom, 625, 627

Answers to Selected
Problems

Provided below are brief or partial answers to a few selected exercise problems.
These answers are meant for readers to verify the correctness of their answers. Deriva-
tions or detailed computational steps in obtaining these answers are left for readers.

Problem 1.1 Average CPI=1.55 cycles per instruction. Effective processor perfor-
mance = 25.8 MIPS. Execution time = 3.87 ns.

Problem 1.4 (a) Average CPI = 2.24. (b) MIPS rate = 17.86

Problem 1.8 (a) Sequential execution time = 1664 CPU cycles. (b) SIMD execution
time = 26 machine cycles. (c) Speedup factor = 64.

Problem 2.5
(a)

(b) S¢ and S; need to use the same Store Unit in accessing the memory. Therefore they
are potentially storage-dependent.

765

Kai Hwang has introduced the issues n designing and using high performance
parallel computers at a time when a plethora of scalable computers utinzing
commodity microprocessors offer higher peak performance than traditional
vector supercomputers. .. The book presents a balanced treatment of the
theary, technology architecture, and software of advanced computer systems
The emphasis on parallelism, scalability. and programmability makes this book
rather unigue and educational | highly recommenrd Dr Hwana's imely nook

| believe it will benefit many readers and be a fine reference

C Gordon Bell

This book offers state-of-the-art principles and technigues for designing and
programming parallel, vector, and scalable computer systems. Written Dy
a leading expert in the tield. the authoritative text covers:

¢ Theory of parallelism — Parallel computer models, program and network
properties, performance laws, and scalabiity anaiysis

« Advanced computer technology — RISC. CISC Superscalar. VLIW. and
superpipelined processors, cache coherence memory hierarchy. advanced
pipelining, and system interconnects

o Parallel and scalable architectures — Multiprocessors, mulhicomputers
multivector and SIMD computers, and scalable. multithreaded, and dataliow
architectures

« Software for parallel programming — Paralle! models languages compilers
message passing. program development, synchronization, paralle! UNIX
extensions. and heterogeneous programmng

o lllustrative examples and problems — Over 100 examples with solutions. 300
liustrations. and 200 homework problems mvolving designs. prools, and analy-

51S. Answers 10 selected problems are given. Solutions Manual avaiable to
nstruclors

o Case studies of real systems — Industnal computers from Cray Intel, TMC,
Fuptsu. NEC, Hitachi, IBM. DEC. MasPar, nCUBE. BBN. KSR, Tera, and
Stardent, and experimental systems from Stanford. MIT. Caltech. lllinoss,
Wisconsin, USC. and ETL in Japan

T'he McGraw-Hill Companies

ISBN-13: 978-0-07-053070-b
ISBN-10: 0-07-053070-X

Tata McGraw-Hill
Publishing Company Limited

7 West Patel Nagar, New Delhi 110 008

Visit our website at : www.tatamcgrawhill.com

N784007010530706

